Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of ZIKV in South America has led to widespread concern with reports of neurological sequelae ranging from Guillain Barré syndrome to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue, a flavivirus closely related to ZIKV. Here we investigate the serological crossreaction between the two viruses. Dengue immune plasma substantially crossreacted with ZIKV and could drive antibody-dependent enhancement of ZIKV infection. Using a panel of human anti-dengue monoclonal antibodies we showed that most antibodies reacting to dengue envelope protein also reacted to ZIKV. Antibodies to linear epitopes including the immunodominant fusion loop epitope while able to bind ZIKV could not neutralize the virus but instead promoted ADE. These data indicate that dengue immunity may drive higher ZIKV replication and have clear implications for disease pathogenesis and future ZIKV and dengue vaccine programs.
Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.
2Dengue disease is caused by four different flavivirus 1 serotypes, which infect 390 million people yearly with 25% symptomatic cases 2 and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (DENV--2) 3,4 . Structural studies so far have characterized only epitopes recognized by serotype specific human antibodies 5,6 . We recently isolated human antibodies potently neutralizing all four DENV serotypes 7 . Here we describe the X--ray structures of four of these broadly neutralizing antibodies (bnAbs) in complex with the envelope glycoprotein E from DENV--2, revealing that the recognition determinants are at a serotype conserved site at the E dimer interface, including the exposed main chain of the E fusion loop 8 and the two conserved glycan chains.This "E--dimer dependent epitope" (EDE) is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell 9 , explaining its conservation across serotypes and highlighting an Achilles heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus.Exposed at the surface of infectious mature DENV particles, protein E is the sole target of neutralizing antibodies. It displays an icosahedral arrangement in which 90 E dimers completely coat the viral surface 10,11 and which is sensitive to the environmental pH. Upon entry of DENV into cells via receptor--mediated endocytosis, the acidic 3 endosomal environment triggers an irreversible fusogenic conformational change in E that leads to fusion of viral and endosomal membranes 1 . The structure of the isolated E dimer has been determined by X--ray crystallography using the soluble ectodomain (sE) 8,12 . Protein E is relatively conserved, displaying about 65% amino acid sequence identity when comparing the most distant DENV serotypes. In particular, there are two conserved N--linked glycosylation sites at positions N67 and N153. To examine its interaction with the antibodies, we selected four highly potent bnAbs identified in the accompanying work: 747(4) A11 and 747 B7 (EDE2 group, requiring glycosylation at position N153 for efficient binding) and 752--2 C8 and 753(3) C10 (EDE1 group, binding regardless of the glycosylation at N153) 7 -referred to as A11, B7, C8 and C10 from hereon. The EDE2 bnAbs were isolated from the same patient (who had a secondary infection with DENV--2), and are somatic variants of the same IgG clone, derived from the IGHV3--74 and IGLV2--23 germ lines. The heavy chain has a very long (26 amino acids, IMGT convention) complementarity--determining region 3 (CDR H3). The EDE1 bnAbs were isolated from different patients and derive from (EDE1 C8, the patient appeared to have a primary infection of undetermined serotype) and IGHV1--3* and IGLV2--14 (EDE1 C10, from a patient with secondary DENV--1 infecti...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.