In renal cell carcinoma, transglutaminase 2 (TGase 2) crosslinks p53 in autophagosomes, resulting in p53 depletion and the tumor's evasion of apoptosis. Inhibition of TGase 2 stabilizes p53 and induces tumor cells to enter apoptosis. This study explored the mechanism of TGase 2-dependent p53 degradation. We found that TGase 2 competes with human double minute 2 homolog (HDM2) for binding to p53; promotes autophagy-dependent p53 degradation in renal cell carcinoma (RCC) cell lines under starvation; and binds to p53 and p62 simultaneously without ubiquitin-dependent recognition of p62. The bound complex does not have crosslinking activity. A binding assay using a series of deletion mutants of p62, p53 and TGase 2 revealed that the PB1 (Phox and Bem1p-1) domain of p62 (residues 85–110) directly interacts with the β-barrel domains of TGase 2 (residues 592–687), whereas the HDM2-binding domain (transactivation domain, residues 15–26) of p53 interacts with the N terminus of TGase 2 (residues 1–139). In addition to the increase in p53 stability due to TGase 2 inhibition, the administration of a DNA-damaging anti-cancer drug such as doxorubicin-induced apoptosis in RCC cell lines and synergistically reduced tumor volume in a xenograft model. Combination therapy with a TGase 2 inhibitor and a DNA-damaging agent may represent an effective therapeutic approach for treating RCC.
PTEN is one of the most frequently mutated or deleted tumor suppressors in human cancers. NEDD4-1 was recently identified as the E3 ubiquitin ligase for PTEN; however, a number of important questions remain regarding the role of ubiquitination in regulating PTEN function and the mechanisms by which PTEN ubiquitination is regulated. In the present study, we demonstrated that p34, which was identified as a binding partner of NEDD4-1, controls PTEN ubiquitination by regulating NEDD4-1 protein stability. p34 interacts with the WW1 domain of NEDD4-1, an interaction that enhances NEDD4-1 stability. Expression of p34 promotes PTEN poly-ubiquitination, leading to PTEN protein degradation, whereas p34 knockdown results in PTEN mono-ubiquitination. Notably, an inverse correlation between PTEN and p34/NEDD4-1 levels was confirmed in tumor samples from colon cancer patients. Thus, p34 acts as a key regulator of the oncogenic behavior of NEDD4-1 and PTEN.
The surgical method and rehabilitation protocol used for zone-2 flexor tendon injury is safe and results in a reasonably good functional outcome.
The Nf2 tumor suppressor codes for merlin, a protein whose function is largely unknown. We have previously demonstrated a novel interaction between merlin and TRBP, which inhibits the oncogenic activity of TRBP. In spite of the significance of their functional interaction, its molecular mechanism still remains to be elucidated. In this report, we investigated how merlin inhibits the oncogenic activity of TRBP in association with cell growth conditions. In the human embryonic kidney 293 cell line, the level of endogenous merlin increased, whereas that of endogenous TRBP significantly decreased along with the increase in cell confluence. We demonstrated that the carboxyl-terminal region of TRBP was responsible for this phenomenon using stable cell lines expressing deletion mutants of TRBP. The overexpression of merlin decreased the protein level of TRBP, and the ubiquitin-like subdomain of merlin's FERM domain was important for this activity. We also demonstrated that TRBP is ubiquitinylated and the ubiquitinylated forms of TRBP are accumulated by ectopically expressed merlin or cell confluence in the presence of MG132, a proteasome inhibitor. Furthermore, we showed that the regulation of TRBP in response to cell confluence was abolished upon knockdown of merlin expression by specific small interfering RNA. Finally, we showed that ectopically expressed merlin restored cell-cell contact inhibition in cells stably expressing TRBP but not in TRBPDeltac. These results suggest that merlin is involved in the regulation of TRBP protein level by facilitating its ubiquitination in response to such cues as cell-cell contacts.
Human essential hypertension is a complex, multifactorial, quantitative trait under a polygenic control. Over the last decade several strategies have been used to dissect the genetic determinants of hypertension. Of these strategies, the study of rare monogenic forms of hypertension has been the most successful. Attempts to identify the multiple genes involved in the more common polygenic form of hypertension has been more difficult. Many laboratories use rat models of genetic hypertension where some of the complexity of studying human hypertension can be removed. Numerous crosses between hypertensive and normotensive strains have produced several quantitative trait loci (QTL) for blood pressure and other related phenotypes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.