Oocytes of many invertebrate and vertebrate species contain a characteristic organelle complex known as the Balbiani body (Bb). Until now, three principal functions have been ascribed to this complex: delivery of germ cell determinants and localized RNAs to the vegetal cortex/posterior pole of the oocyte, transport of the mitochondria towards the germ plasm, and participation in the formation of lipid droplets. Here, we present the results of a computer-aided 3D reconstruction of the Bb in the growing oocytes of an insect, Thermobia domestica. Our analyses have shown that, in Thermobia, the central part of each fully developed Bb comprises a single intricate mitochondrial network. This “core” network is surrounded by several isolated bean-shaped mitochondrial units that display lowered membrane potential and clear signs of degeneration. In light of the above results and recent theoretical models of mitochondrial quality control, the role of the Bb is discussed. We suggest that, in addition to the aforementioned functions, the Bb is implicated in the selective elimination of dysfunctional mitochondria during oogenesis.Electronic supplementary materialThe online version of this article (doi:10.1007/s00441-016-2414-x) contains supplementary material, which is available to authorized users.
Abstract. The ultrastructure, distribution and transovarial transmission of endosymbiotic bacteria in representatives of six aphid families: Eriosomatidae (Pemphigus spyrothecae, Prociphilus fraxini), Anoeciidae [Anoecia (Anoecia) corni], Drepanosiphidae [Mindarus abietinus, Sipha (Rungsia) maydis, Clethrobius comes, Myzocallis (Lineomyzocallis) walshii], Thelaxidae (Thelaxes dryophila), Aphididae (Delphiniobium junackianum, Aphis viburni, Cavariella theobaldi, Macrosiphoniella tanacetaria) and Lachnidae (Schizolachnus pineti, Eulachnus rileyi) were studied at the ultrastructural level. The ovaries of aphids are accompanied by large organs termed bacteriomes that consist of giant cells termed bacteriocytes. The bacteriocyte cytoplasm is tightly packed with endosymbiotic bacteria. Ultrastructural observations have shown that the bacteria Buchnera aphidicola (primary symbiont of aphids) present in various species are characterized by significant differences in both size and organization of their cytoplasm. In the aphids, Prociphilus fraxini, Sipha (Rungsia) maydis, Thelaxes dryophila, Aphis viburni, Cavariella theobaldi, Macrosiphoniella tanacetaria, Eulachnus rileyi and Schizolachnus pineti, in addition to Buchnera aphidicola, secondary endosymbionts are also present. The bacteriocytes containing secondary endosymbionts are less numerous than those with Buchnera. In Eulachnus rileyi (Lachnidae), in addition to primary and secondary endosymbionts, there is a third type of microorganism. In all species examined both the primary and secondary endosymbionts are transovarially transmitted from mother to offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.