The brain arteries derived from 50 adult degu individuals of both sexes were injected with synthetic latex introduced with a syringe into the left ventricle of the heart under constant pressure. After fixation in 5% formalin and brain preparation, it was found that the sources of the brain's supply of blood are vertebral arteries and the basilar artery formed as a result of their anastomosis. The basilar artery gave rise to caudal cerebellar arteries and then divided into two branches which formed the arterial circle of the brain. The internal carotid arteries in degus, except for one case, were heavily reduced and did not play an important role in the blood supply to the brain. The arterial circle of the brain in 48% of the cases was open from the rostral side. Variation was identified in the anatomy and the pattern of the arteries of the base of the brain in the degu which involved an asymmetry of the descent of caudal cerebellar arteries (6.0%), rostral cerebellar arteries (8%) as well as middle cerebral arteries (12%). In 6% of the individuals double middle cerebral arteries were found. In one out of 50 cases there was observed a reduction in the left vertebral artery and the appearance of the internal carotid artery on the same side. In that case the left part of the arterial circle of the brain was supplied with blood by an internal carotid artery, which was present only in that animal.
ABSTRACT:The cortical branches of the middle cerebral artery in the otter were described using 60 hemispheres. It was demonstrated that the artery is divided into ten permanent branches. Two rhinal arteries supply the region of the brain located on the border between the old and the archicortex and the neocortex. The other eight branches are divided into three branches running towards the frontal lobe, two branches -to the region of the parietal lobe and three temporal branches which supply blood to the neocortex only. The frontal, parietal and temporal branches descended independently from the main trunk of the middle cerebral artery or first formed a common trunk. Common trunks for specific groups of bifurcations were described as the middle cerebral artery (anterior, superior and posterior).
Research into course and variability of brain arteries in hare were performed on 38 adult hares of both sexes (males 23 and females 15). The arteries were filled with a synthetic latex at a constant pressure introduced with a medical syringe to the left ventricle. The source of blood supply to the brain was internal carotid arteries, whose branches formed an arterial circle of the brain, vertebral arteries, and basilar artery as the result of its anastomosis. Variability focused on a method of departure of middle cerebral arteries, which were multiple vessels in 39.5% of cases and rostral cerebellar arteries. Caudal communicating arteries in hare comprised bilateral anastomosis of internal carotid arteries and final branches of the basilar artery. It stabilized the steady flow of blood to all parts of the brain. Caudal cerebral arteries comprised final branches of the basilar artery. The largest capacity of all the arteries of the brain was observed in the main trunk of the basilar artery. The capacity of these vessels was 4.53 mm 3 on average. The factor of capacity of cerebral arteries in relation to weight of the brain reaches a high value in hare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.