In recent years, the demand for miniaturization and integration of many functions of telecommunication equipment is of great interest, especially devices that are widely used in life such as mobile communication systems, smart phones, handheld tablets, GPS receivers, wireless Internet devices, etc. To satisfy this requirement, the mobile device components must be compact and capable of multifunction, multifrequency band operation. An antenna is one of them; it means that it must be conformal to the body of device, reduced in size, and capable to operating at multiple frequencies of mobile communication systems that have been operating on one, so-called smart device. Nowadays, there are many technical solutions applied in the antenna construction to satisfy of those requirements. There are microstrip antenna technology miniaturized by means of high-permittivity dielectric substrate, using shorting wall, shorting pins, some deformation, as the fractal geometry is, and others. However, these methods have disadvantage such as narrow bandwidth and low gain. A new solution that is of great interest to designers is the use of electromagnetic metamaterials for antenna design. The use of metamaterials in antenna design not only dramatically reduces the size of the antenna but can also improve other antenna parameters such as enhancing bandwidth, increasing gain, or generating multiband frequencies of antennas operation.
Recently, telecommunication systems have been requiring more advanced features in the design and operation. Among others a smaller size of devices, which can be integrated for multiple mobile communication systems, applied in one user'sd e v i c e board, such as PDA or smart phone. Moreover, the cost of mass production should be minimized as much as possible. To meet part of that request, the antennas of these devices should have small size, lower weight, operating in multiple frequency bands and/or be broadband. There are many research methods to achieve this goal, one of which is using the fractal geometries for the shape of antenna elements. In recent years, there are many fractal shapes that have been proposed for such applications, and the designed antennas have significantly improved antenna features such as smaller size, operating in multi-frequency bands, with improved power gain and efficiency. In recent years, the new approach for modern antenna the metamaterials, MTM, is adopted, and sometimes that based on the fractal geometry is adopted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.