Non-coding RNAs (ncRNAs) are involved in the regulation of numerous biological processes and pathways and therefore have been extensively studied in human diseases. Previous reports have shown that non-coding RNAs play a crucial role in the pathogenesis and aberrant regulation of respiratory diseases. The altered expression of microRNAs (miRNAs) and long non-coding RNAs in blood and also locally in sputum or exhaled breath condensate influences lung function, immune response, and disease phenotype and may be used for the development of biomarkers specific for airway disease. In this review, we provide an overview of the recent works studying the non-coding RNAs in airway diseases, with a particular focus on chronic respiratory diseases of childhood. We have chosen the most common chronic respiratory condition—asthma—and the most severe, chronic disease of the airways—cystic fibrosis. Study of the altered expression of non-coding RNAs in these diseases may be key to better understanding their pathogenesis and improving diagnosis, while also holding promise for the development of therapeutic strategies using the regulatory potential of non-coding RNAs.
Precision-cut lung slices (PCLS) have gained increasing interest as a model to study lung biology/disease and screening novel therapeutics. In particular, PCLS derived from human tissue can better recapitulate some aspects of lung biology/disease as compared to animal models. Several experimental readouts have been established for use with PCLS, but obtaining high yield and quality RNA for downstream analysis has remained challenging. This is particularly problematic for utilizing the power of next-generation sequencing techniques, such as RNA-sequencing (RNA-seq), for non-biased and high through-put analysis of PCLS human cohorts. In the current study, we present a novel approach for isolating high quality RNA from a small amount of tissue, including diseased human tissue, such as idiopathic pulmonary fibrosis (IPF). We show that the RNA isolated using this method has sufficient quality for RT-qPCR and RNA-seq analysis. Furthermore, the RNA-seq data from human PCLS could be used in several established computational pipelines, including deconvolution of bulk RNA-seq data using publicly available single-cell RNA-seq data. Deconvolution using Bisque revealed a diversity of cell populations in human PCLS, including several immune cell populations, which correlated with cell populations known to be present and aberrant in human disease.
A b s t r a c t LAMP is an innovative, simple, rapid, specific and cost--effective nucleic acid amplification method. Due to the use of a special enzyme -GspSSD polymerase, the reaction takes a short time and can be performed at isothermal conditions. The sensitivity and specificity of LAMP technique is significantly higher, than standard PCR techniques, as two or three specific primer pairs are used. The technique is regarded as a useful tool for the detection and identification of plant pathogens. In this work, LAMP was used to study the composition of the population of fungi of the genus Leptosphaeria, causing a damaging disease of oilseed rape, called blackleg or stem canker. The detection concerned DNA present in fungal spores contained in air samples obtained using Hirst-type volumetric trap, in Pomerania (north Poland) in 2010. The results achieved using the LAMP technique were similar to these obtained with previously used, highly specific method of Real-time PCR. Conducting LAMP reaction was much easier and less time-and cost-consuming, due to a simplified method of DNA isolation of pathogens from plant tissues. Then, the LAMP technique was used to assess the composition of the population of Leptosphaeria spp. in plants of oilseed rape collected from the field in the Opole region (south-western part of Poland) in 2013. In contrast to studies conducted in [2002][2003], the analysis of leaf symptoms showed a higher proportion of L. maculans compared to L. biglobosa, what reflects changes in the composition of pathogen population of fungi causing blackleg on oilseed rape in this part of Poland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.