Single-electron devices operating at room temperature require sub-5 nm quantum dots having tunnel junctions of comparable dimensions. Further development in nanoelectronics depends on the capability to generate mesoscopic structures and interfacing these with complementary metal–oxide–semiconductor devices in a single system. The authors employ a combination of two novel methods of fabricating room temperature silicon single-electron transistors (SETs), Fowler–Nordheim scanning probe lithography (F-N SPL) with active cantilevers and cryogenic reactive ion etching followed by pattern-dependent oxidation. The F-N SPL employs a low energy electron exposure of 5–10 nm thick high-resolution molecular resist (Calixarene) resulting in single nanodigit lithographic performance [Rangelow et al., Proc. SPIE 7637, 76370V (2010)]. The followed step of pattern transfer into silicon becomes very challenging because of the extremely low resist thickness, which limits the etching depth. The authors developed a computer simulation code to simulate the reactive ion etching at cryogenic temperatures (−120 °C). In this article, the authors present the alliance of all these technologies used for the manufacturing of SETs capable to operate at room temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.