Abstract:The cost of a future exploitation of a decision support system plays a key role. The paper deals with the problem of feature value acquisition cost for such systems. We present a modification of a cost-sensitive learning method for decision-tree induction with fixed attribute acquisition cost limit. Properties of the concept are established during computer experiments conducted on chosen benchmark databases from the UCI Machine Learning Repository and a real medical decision task. The results of experiments confirm that, for some decision problems, our proposition allows us to obtain a classifier with the same quality as a classifier obtained without cost limit but its exploitation is cheaper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.