We present a framework for verifying temporal and epistemic properties of multi-agent systems by means of bounded model checking. We use interpreted systems as underlying semantics. We give details of the proposed technique, and show how it can be applied to the "attacking generals problem", a typical example of coordination in multi-agent systems.
DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Abstract. The paper surveys some of the most recent approaches to verification of properties, expressible in some timed and untimed temporal logics (LTL, CTL, TCTL), for real-time systems represented by time Petri nets (TPN's) and timed automata (TA). Firstly, various structural translations from TPN's to TA are discussed. Secondly, model abstraction methods, based on state class approaches for TPN's, and on partition refinement for TA, are given. Next, SAT-based verification techniques, like bounded and unbounded model checking, are discussed. The main focus is on bounded model checking for TCTL and for reachability properties. The paper ends with a comparison of experimental results for several time Petri nets, obtained using the above solutions, i.e., either model abstractions for TPN's, or a translation of a net to a timed automaton and then verification methods for TA. The experiments have been performed using some available tools for TA and TPN's.
We propose a general semantics for strategic abilities of agents in asynchronous systems, with and without perfect information. Based on the semantics, we show some general complexity results for verification of strategic abilities in asynchronous interaction. More importantly, we develop a methodology for partial order reduction in verification of agents with imperfect information. We show that the reduction preserves an important subset of strategic properties, with as well as without the fairness assumption. We also demonstrate the effectiveness of the reduction on a number of benchmarks. Interestingly, the reduction does not work for strategic abilities under perfect information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.