The aim of this article is to examine the crystallization tendencies of three chemically related amorphous anti-inflammatory agents, etoricoxib, celecoxib, and rofecoxib. Since the molecular mobility is considered as one of the factors affecting the crystallization behavior of a given material, broadband dielectric spectroscopy was used to gain insight into the molecular dynamics of the selected active pharmaceutical ingredients. Interestingly, our experiments did not reveal any significant differences in their relaxation behavior either in the supercooled liquid or in the glassy state. Hence, as a possible explanation for the enhanced physical stability of etoricoxib, its ability to undergo a tautomerization reaction was recognized. The occurrence of intramolecular proton transfer in the disordered etoricoxib was proven experimentally by time-dependent dielectric and infrared (IR) measurements. Additionally, IR spectroscopy combined with density functional theory calculations pointed out that in the etoricoxib drug, being in fact a binary mixture of tautomers, the individual isomers may interact with each other through a hydrogen bonding network. A possible explanation of this issue was achieved by performing dielectric experiments at elevated pressure. Since compression results in etoricoxib recrystallization, the possible influence of pressure on the observed stabilization effect is also carefully discussed.
The aim of the present study was to evaluate the effects of a 6 week resistance training protocol under hypoxic conditions (FiO2 = 12.9%, 4000 m) on muscle hypertrophy. The project included 12 resistance trained male subjects, randomly divided into two experimental groups. Group 1 (n = 6; age 21 ± 2.4 years; body height [BH] 178.8 ± 7.3 cm; body mass [BM] 80.6 ± 12.3 kg) and group 2 (n = 6; age 22 ± 1.5 years; BH 177.8 ± 3.7cm; BM 81.1 ± 7.5 kg). Each group performed resistance exercises alternately under normoxic and hypoxic conditions (4000 m) for 6 weeks. All subjects followed a training protocol that comprised two training sessions per week at an exercise intensity of 70% of 1RM; each training session consisted of eight sets of 10 repetitions of the bench press and barbell squat, with 3 min rest periods. The results indicated that strength training in normobaric hypoxia caused a significant increase in BM (p < 0.01) and fat free mass (FFM) (p < 0.05) in both groups. Additionally, a significant increase (p < 0.05) was observed in IGF-1 concentrations at rest after 6 weeks of hypoxic resistance training in both groups. The results of this study allow to conclude that resistance training (6 weeks) under normobaric hypoxic conditions induces greater muscle hypertrophy compared to training in normoxic conditions.
Objectives: Vestibular rehabilitation leads to a gradual diminution of the subjective and objective symptoms that accompany the vestibular disorders. The aim of the study was to compare the impact of 2 different types of vestibular rehabilitation on vestibular compensation in patients with chronic unilateral vestibular dysfunction. Material and Methods: The study was conducted on a group of 58 subjects (43 females and 15 males) aged 40-64 years, who presented with chronic unilateral vestibular dysfunction and were hospitalized. The patients were randomly assigned to either of the 2 groups established. The study was conducted in a 6-week period. Group 1 consisted of patients who underwent customized group vestibular rehabilitation in an outpatient setting. The program was performed once a week for 1 h 30 min, under the supervision of a physiotherapist and a physiatrist. Group 2 was instructed to perform Cawthorne-Cooksey exercises and simple balance exercises twice a day for 15 min. Results: An improvement in the outcomes of the Dynamic Gait Index as well as the Berg Balance Scale was statistically significant for group 1. The time for fulfilling the task in the Timed Up and Go Test improved in both groups (p < 0.05). The subjective estimation of the symptoms evaluated with the use of the Dizziness Handicap Inventory and the Visual Analogue Scale revealed a statistically significant improvement in both groups, yet it was higher in group 1. Conclusions: The compensation achieved after 6 weeks of the customized, supervised outpatient rehabilitation program in group 1 was superior to the results of the home-based unsupervised Cawthorne-Cooksey and balance exercises.
Athletic performance is a multifactorial phenotype influenced by environmental factors as well as multiple genetic variants. Different genetic elements have a great influence over components of athletic performance such as endurance, strength, power, flexibility, neuromuscular coordination, psychological traits and other features important in sport. The current literature review revealed that to date more than 69 genetic markers have been associated with power athlete status. For the purpose of the present review we have assigned all genetic markers described with reference to power athletes status to seven main groups: 1) markers associated with skeletal muscle structure and function, 2) markers involved in the inflammatory and repair reactions in skeletal muscle during and after exercise, 3) markers involved in blood pressure control, 4) markers involved in modulation of oxygen uptake, 5) markers that are regulators of energy metabolism and cellular homeostasis, 6) markers encoding factors that control gene expression by rearrangement of chromatin fibers and mRNA stability, and 7) markers modulating cellular signaling pathways. All data presented in the current review provide evidence to support the notion that human physical performance may be influenced by genetic profiles, especially in power sports. The current studies still represent only the first steps towards a better understanding of the genetic factors that influence power-related traits, so further analyses are necessary before implementation of research findings into practice.
Acetylated derivative of maltose might be very effective agent to improve physical stability of amorphous indomethacin as well as to enhance its solubility. Intermolecular interactions between modified carbohydrate and IMC are likely to be responsible for increased stability effect in the glassy state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.