Low shrinkage in x and y direction and low tolerances of shrinkage are an indispensable precondition for high-density component configuration. Therefore, zero shrinkage sintering technologies as pressure-assisted sintering and sacrificial tapes have been introduced in the low-temperature co-fired ceramics (LTCC) production by different manufacturers. Disadvantages of these methods are high costs of sintering equipment and an additional process step to remove the sacrificial tapes. In this article, newly developed self-constrained sintering methods are presented. The new technology, HeraLock s , delivers LTCC modules with a sintering shrinkage in x and y direction of less than 0.2% and with a shrinkage tolerance of 70.02% without sacrificial layers and external pressure. Each tape is self-constrained by integration of a layer showing no shrinkage in the sintering temperature range of the LTCC. Large area metallization, integration of channels, cavities and passive electronic components are possible without waviness and camber. Self-constrained laminates are an alternative way to produce zero shrinkage LTCC. They consist of tapes sintering at different temperature intervals. Precondition for a successful production of a self-constrained LTCC laminate is the development of well-adapted material and tapes, respectively. This task is very challenging, because sintering range, high-temperature reactivity and thermal expansion coefficient have to be matched and each tape has to fulfill specific functions in the final component, which requires the tailoring of many properties as permittivity, dielectric loss, mechanical strength, and roughness. A self-constrained laminate is introduced in this article. It consists of inner tapes sintering at especially low-temperature range between 6501C and 7201C and outer tapes with an as-fired surface suitable for thin-film processes.
Sintering and microstructure evolution of alkali‐free calcium–alumo–borosilicate glass/α‐Al2O3 composites (mean particle size ca. 2 μm) for low‐temperature cofired ceramics were studied during heating at 5 K/min by heating microscopy, thermal analysis (DTA), X‐ray diffraction (XRD), and electron microscopy (SEM). Composites fully densify at ≈830°C, not essentially influenced by the dissolution of alumina and glass crystallization. Thus wollastonite, as first crystalline phase, was detectable at 840°C. Above 900°C, a pronounced crystallization of anorthite is evident, reaching 60 wt% at 1050°C. Rietveld analyses of XRD data revealed that anorthite precipitates at the expenses of alumina, which declines from ≈33 to <10 wt%, and wollastonite, which fully declines from its maximum of ≈19 wt%. Based on XRD, we discuss the evolution of crystal mass fractions, the residual glass composition, the glass viscosity, and the effective shear viscosity of the composites under study during heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.