Large euhedral crystals of calcium carbonate hexahydrate were recovered from a shelf basin of the Bransfield Strait, Antarctic Peninsula, at a water depth of 1950 meters and sub-zero bottom water temperatures. The chemistry, mineralogy, and stable isotope composition of this hydrated calcium carbonate phase, its environment of formation, and its mode of precipitation confirm the properties variously attributed to hypothetical precursors of the glendonites and thereby greatly expand their use in paleoceanographic interpretation.
The aerodynamic performance of lifting surfaces operating at low Reynolds number conditions is impaired by laminar separation. In most cases, transition to turbulence occurs in the separated shear layer as a result of a series of strong hydrodynamic instability mechanisms. Although the understanding of these mechanisms has been significantly advanced over the past decades, key questions remain unanswered about the influence of external factors such as free-stream turbulence (FST) and others on transition and separation. The present study is driven by the need for more accurate predictions of separation and transition phenomena in ‘real world’ applications, where elevated levels of FST can play a significant role (e.g. turbomachinery). Numerical investigations have become an integral part in the effort to enhance our understanding of the intricate interactions between separation and transition. Due to the development of advanced numerical methods and the increase in the performance of supercomputers with parallel architecture, it has become feasible for low Reynolds number application ($O(10^{5})$) to carry out direct numerical simulations (DNS) such that all relevant spatial and temporal scales are resolved without the use of turbulence modelling. Because the employed high-order accurate DNS are characterized by very low levels of background noise, they lend themselves to transition research where the amplification of small disturbances, sometimes even growing from numerical round-off, can be examined in great detail. When comparing results from DNS and experiment, however, it is beneficial, if not necessary, to increase the background disturbance levels in the DNS to levels that are typical for the experiment. For the current work, a numerical model that emulates a realistic free-stream turbulent environment was adapted and implemented into an existing Navier–Stokes code based on a vorticity–velocity formulation. The role FST plays in the transition process was then investigated for a laminar separation bubble forming on a flat plate. FST was shown to cause the formation of the well-known Klebanoff mode that is represented by streamwise-elongated streaks inside the boundary layer. Increasing the FST levels led to accelerated transition, a reduction in bubble size and better agreement with the experiments. Moreover, the stage of linear disturbance growth due to the inviscid shear-layer instability was found to not be ‘bypassed’.
The Siak is a black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. The dissolved organic carbon (DOC) concentrations measured during five expeditions in the Siak between 2004 and 2006 are among the highest reported world wide. The DOM decomposition appeared to be a main factor influencing the oxygen concentration in the Siak which showed values down to 12 lmol l -1 . Results derived from a box-diffusion model indicated that in addition to the DOC concentration and the associated DOM decomposition the water-depth also plays a crucial role in regulating the oxygen levels in the river because of its impact on the turbulence in the aquatic boundary layer and the surface/volume ratio of water in the river. Model results imply furthermore that a reduced water-depth could counteract an increased oxygen consumption caused by an enhanced DOM leaching during the transition from dry to wet periods. This buffer mechanism seems to be close to its limits as indicated by sensitivity studies which showed in line with measured data that an increase of the DOC concentrations by *15% could already lead to anoxic conditions in the Siak. This emphasizes the sensitivity of the Siak against further peat soil degradation, which is assumed to increase DOC concentrations in the rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.