Hyaluronic acid (HA) ophthalmic solution is widely used in dry eye treatment worldwide. However, there are no reports comparing the dry eye treatment effects of high molecular weight HA with low molecular weight HA. Sixty eight-week-old C57BL/6 mice were assigned to the following 6 groups and exposed to environmental dry eye stress (EDES) that mimics office work environment: (1) 0.1% low molecular weight HA (LMWHA) eye drops, (2) 0.3% LMWHA eye drops, (3) 3% diquafosol sodium (DQ) eye drops, (4) 0.15% high molecular weight HA (HMWHA) eye drops, (5) no treatment with exposure to EDES (EDES+/Treatment−), and (6) no treatment without exposure to EDES (EDES−/Treatment−). After EDES, the HMWHA group had significantly longer break-up time (BUT) than the 0.1%, 0.3% LMWHA groups and the DQ group. After EDES, the HMWHA group had significantly lower lissamine green staining scores than the LMWHA and DQ groups. Subepithelial presumed dendritic cell density in the HMWHA group was significantly lower than the EDES+/Treatment− group. After EDES exposure, Conjunctival Muc5AC mRNA expression in the HMWHA group was significantly higher than the 0.1 and 0.3% LMWHA groups. Ophthalmic HMWHA solution may have a better dry eye treatment effect than LMWHA or DQ solution, owing to its anti-inflammatory effect.
The chain length of hyaluronan (HA) determines its physical as well as its physiological properties. Results of clinical research on HA eye drops are not comparable without this parameter. In this article methods for the assessment of the average molecular weight of HA in eye drops and a terminology for molecular weight ranges are proposed. The classification of HA eye drops according to their zero shear viscosity and viscosity at 1000 s−1 shear rate is presented. Based on the gradient of mucin MUC5AC concentration within the mucoaqueous layer of the tear film a hypothesis on the consequences of this gradient on the rheological properties of the tear film is provided. The mucoadhesive properties of HA and their dependence on chain length are explained. The ability of HA to bind to receptors on the ocular epithelial cells, and in particular the potential consequences of the interaction between HA and the receptor HARE, responsible for HA endocytosis by corneal epithelial cells is discussed. The physiological function of HA in the framework of ocular surface homeostasis and wound healing are outlined, and the influence of the chain length of HA on the clinical performance of HA eye drops is illustrated. The use of very high molecular weight HA (hylan A) eye drops as drug vehicle for the next generation of ophthalmic drugs with minimized side effects is proposed and its advantages elucidated. Consequences of the diagnosis and treatment of ocular surface disease are discussed.
The aim of the HYLAN M study was to investigate if symptoms and/or signs of patients suffering from severe dry eye disease (DED) can be improved by substituting individually optimized artificial tear therapy by high molecular weight hyaluronan (HMWHA) eye drops. In this international, multicenter study, patients with symptoms of at least ocular surface disease index (OSDI) 33 and corneal fluorescein staining (CFS) of at least Oxford grade 3 were included. A total of 84 per-protocol patients were randomized in two study arms. The control group continued to use their individual optimum artificial tears over the study period of eight weeks; in the verum group, the artificial tears were substituted by eye drops containing 0.15% HMWHA. At the week 8 visit, the average OSDI of the verum group had improved by 13.5 as compared to the control group (p = 0.001). The best corrected visual acuity (BCVA) had improved by 0.04 logMAR (p = 0.033). CFS, tear film break-up time (TBUT), Schirmer I, lid wiper epitheliopathy (LWE), mucocutaneous junction (Yamaguchi score), and tear osmolarity were not significantly different between the verum and control groups (p > 0.050). We conclude that for most patients with severe DED, 0.15% HMWHA eye drops provide excellent improvement of symptoms without impairment of dry eye signs.
The purpose of this study was to investigate the effect of high molecular weight hyaluronan (HMWHA) eye drops on subbasal corneal nerves in patients suffering from severe dry eye disease (DED) and to evaluate the damage of subbasal corneal nerves associated with severe DED. Designed as an international, multicenter study, 16 patients with symptoms of at least an Ocular Surface Disease Index (OSDI) score of 33, and corneal fluorescein staining (CFS) of at least Oxford grade 3, were included and randomized into two study arms. The control group continued to use their individual optimum artificial tears over the study period of eight weeks; in the verum group, the artificial tears were substituted by eye drops containing 0.15% HMWHA. At the baseline visit, and after eight weeks, the subbasal nerve plexus of 16 patients were assessed by confocal laser scanning microscopy (CSLM). The images were submitted to a masked reading center for evaluation. Results showed a significant increase of total nerve fiber lengths (CNFL) in the HMWHA group (p = 0.030) when compared to the control group, where the total subbasal CNFL did not significantly change from baseline to week 8. We concluded that in severe DED patients, HMWHA from topically applied eye drops could cross the epithelial barrier and reach the subbasal nerve plexus, where it exercised a trophic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.