SABIO-RK (http://sabio.h-its.org/) is a web-accessible database storing comprehensive information about biochemical reactions and their kinetic properties. SABIO-RK offers standardized data manually extracted from the literature and data directly submitted from lab experiments. The database content includes kinetic parameters in relation to biochemical reactions and their biological sources with no restriction on any particular set of organisms. Additionally, kinetic rate laws and corresponding equations as well as experimental conditions are represented. All the data are manually curated and annotated by biological experts, supported by automated consistency checks. SABIO-RK can be accessed via web-based user interfaces or automatically via web services that allow direct data access by other tools. Both interfaces support the export of the data together with its annotations in SBML (Systems Biology Markup Language), e.g. for import in modelling tools.
BackgroundSystems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data.ResultsTo increase the efficiency of model creation, the Path2Models project has automatically generated mathematical models from pathway representations using a suite of freely available software. Data sources include KEGG, BioCarta, MetaCyc and SABIO-RK. Depending on the source data, three types of models are provided: kinetic, logical and constraint-based. Models from over 2 600 organisms are encoded consistently in SBML, and are made freely available through BioModels Database at http://www.ebi.ac.uk/biomodels-main/path2models. Each model contains the list of participants, their interactions, the relevant mathematical constructs, and initial parameter values. Most models are also available as easy-to-understand graphical SBGN maps.ConclusionsTo date, the project has resulted in more than 140 000 freely available models. Such a resource can tremendously accelerate the development of mathematical models by providing initial starting models for simulation and analysis, which can be subsequently curated and further parameterized.
In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.
SABIO-RK (http://sabiork.h-its.org/) is a manually curated database containing data about biochemical reactions and their reaction kinetics. The data are primarily extracted from scientific literature and stored in a relational database. The content comprises both naturally occurring and alternatively measured biochemical reactions and is not restricted to any organism class. The data are made available to the public by a web-based search interface and by web services for programmatic access. In this update we describe major improvements and extensions of SABIO-RK since our last publication in the database issue of Nucleic Acid Research (2012). (i) The website has been completely revised and (ii) allows now also free text search for kinetics data. (iii) Additional interlinkages with other databases in our field have been established; this enables users to gain directly comprehensive knowledge about the properties of enzymes and kinetics beyond SABIO-RK. (iv) Vice versa, direct access to SABIO-RK data has been implemented in several systems biology tools and workflows. (v) On request of our experimental users, the data can be exported now additionally in spreadsheet formats. (vi) The newly established SABIO-RK Curation Service allows to respond to specific data requirements.
The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets. It enables researchers to organize, share and publish data, models and protocols, interlink them in the context of the systems biology investigations that produced them, and to interrogate them via API interfaces. By using the FAIRDOMHub, researchers can achieve more effective exchange with geographically distributed collaborators during projects, ensure results are sustained and preserved and generate reproducible publications that adhere to the FAIR guiding principles of data stewardship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.