The honeydew composition and production of four aphid species feeding on Tanacetum vulgare, and mutualistic relationships with the ant Lasius niger were studied. In honeydew of Metopeurum fuscoviride and Brachycaudus cardui, xylose, glucose, fructose, sucrose, maltose, melezitose, and raffinose were detected. The proportion of trisaccharides (melezitose, raffinose) ranged between 20% and 35%. No trisaccharides were found in honeydew of Aphis fabae, and honeydew of Macrosiphoniella tanacetaria consisted of only xylose, glucose and sucrose. M. fuscoviride produced by far the largest amounts of honeydew per time unit (880 μg/aphid per hour), followed by B. cardui (223 μg/aphid per hour), A. fabae (133 μg/aphid per hour) and M. tanacetaria (46 μg/aphid per hour). The qualitative and quantitative honeydew production of the aphid species corresponded well with the observed attendance by L. niger. L. niger workers preferred trisaccharides over disaccharides and monosaccharides when these sugars were offered in choice tests. The results are consistent with the ants' preference for M. fuscoviride, which produced the largest amount of honeydew including a considerable proportion of the trisaccharides melezitose and raffinose. The preference of L. niger for B. cardui over A. fabae, both producing similar amounts of honeydew, may be explained by the presence of trisaccharides and the higher total sugar concentration in B. cardui honeydew. M. tanacetaria, which produced only low quantities of honeydew with no trisaccharides was not attended at all by L. niger.
Hyperparasitoids are secondary insect parasitoids that develop at the expense of a primary parasitoid, thereby representing a highly evolved fourth trophic level. This review evaluates multitrophic relationships and hyperparasitoid ecology. First, hyperparasitoid communities of various taxa of phytophagous and predacious insects are described. Second, specific patterns of hyperparasitoid community organization and hyperparasitoid ecology are described in detail, using the aphid-parasitoid-hyperparasitoid food web as a model system. Aphid hyperparasitoid communities consist of ecto- and endohyperparasitoids, with ectohyperparasitoids being less host specific than endohyperparasitoids. Lifetime fecundity and intrinsic rate of increase of hyperparasitoids are generally lower than those of their primary hosts. Aphid ectohyperparasitoids search randomly for hosts and do not use specific cues, whereas endohyperparasitoids gain information that originates from host plants or hosts for long-range search. Interactions with adult primary parasitoids do not influence hyperparasitoid searches, but aphid-attending ants typically prevent successful hyperparasitoid foraging. Impact of hyperparasitism on biological control is reviewed.
Aphidiid parasitoids (Hymenoptera: Aphidiidae) of aphids generally exploit only a small percentage of the available host resources in the field. This limited impact on aphid populations has often been explained as a consequence of hyperparasitism. We propose that a wasp's reproductive strategy, as opposed to hyperparasitism, is the dominant factor in aphidiid population dynamics. A wasp's foraging efficiency and oviposition decisions are influenced by several variables, including searching behaviour between and within patches, host choice (as modified by the aphids' defensive behaviours), and plant structural complexity. Two broadly different patterns of host exploitation have evolved in aphidiid wasps in relation to ant-aphid mutualism. Firstly, in species that are exposed to predation and hyperparasitism, a female may leave a patch before all suitable hosts are parasitized. Because predators and hyperparasitoids tend to aggregate at high aphid or aphidiid densities, or in response to aphid honeydew, this strategy enables females to reduce offspring mortality by "spreading the risk" over several host patches. Secondly, in species that have evolved mechanisms to avoid aggression by mutualistic ants, females are able to exploit a hyperparasitoid-free resource space. Such species may concentrate their eggs in only a few aphid colonies, which are thus heavily exploited. Although hyperparasitism of species in the first group tends to reach high levels, its overall impact on aphid-aphidiid population dynamics is probably limited by the low average fecundity of most hyperparasitoids. We discuss the foraging patterns of aphidiid wasps in relation to aphid population regulation in general, and to classical biological control in particular. We argue that a parasitoid's potential to regulate the host population is largely determined by its foraging strategy. In an exotic parasitoid, a behavioural syndrome that has evolved and presumably is adaptive in a more diverse (native) environment may, in a more uniform (managed) environment, result in suboptimal patch-leaving and oviposition decisions, and possibly increased resource usage.
Species in the family Aphidiidae (Hymenoptera) parasitize exclusively ovoviviparous aphids. Females use a variety of information to detect and evaluate suitable hosts. Olfactory cues associated with aphids, or the aphids’ host plant, are important for host location. Visual cues including aphid colour, shape, and movement can be evaluated from a distance without physical contact; aphid movement may act as a releasing stimulus for attack. Contact chemosensory cues (gustatory cues) are evaluated by antennation of the host cuticle and during ovipositor probing. A potential host must conform to the wasp’s response profile and satisfy minimum physiological and dietary requirements for immature development and growth. Host quality is determined in part by attributes specific to each aphid species and in part by each aphid’s individual-specific growth potential. Host quality for male and female progeny may vary as a result of different patterns of resource allocation and sexual size dimorphism. For an encountered aphid to be accepted as a host, its perceived value must exceed the wasp’s response threshold for oviposition. Host value, as opposed to host quality, varies dynamically with parasitoid state variables such as age, egg load, and prior experience. A conceptual model of host choice by aphidiid wasps is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.