Filler materials are widely used in combination with polymer materials. Conventional filler particles generally cause light scattering and absorption because of their optical characteristic or refractive index difference. With nanoparticles (NPs) as a filler material, it is theoretically possible to manufacture transparent compounds due to their small particle dimensions reducing the interaction with light. Nevertheless, the particles tend to build agglomerates and aggregates which reduce the composite’s transparency considerably. This review gives an overview of the effect different particle materials have on the properties of transparent polymer composites with consideration of the composite’s transparency. There are very few reports on highly transparent and thick (>1 mm) polymer nanocomposites with such an amount of particles that affect other properties of the polymer significantly. In the majority of cases, NPs lead to a significant lower transparency. This indicates that the homogeneous dispersion of the particles is still a major difficulty in producing transparent nanocomposites with enhanced properties.
The counting rate of the 88 keV Ag109m γ-rays emitted from a cd109-doped silver single crystal was measured as a function of temperature. The decrease in emission intensity between 78 K and 4.2 K was greater than the decrease between room temperature and 78 K. This behaviour is explained in terms of the temperature dependence of the resonant self absorption (Mössbauer effect)
This study presents a method for the determination of the dynamic pressure-dependent solidification of polycarbonate (PC) during flow using high pressure capillary rheometer (HPC) measurements. In addition, the pressure-dependent solidification was determined by isothermal pressure-volume-temperature (pvT) measurements under static conditions without shear. Independent of the compression velocity, a linear increase of the solidification pressure with temperature could be determined. Furthermore, the results indicate that the relaxation time at a constant temperature and compression rate can increase to such an extent that the material can no longer follow within the time scale specified by the compression rate. Consequently, the flow through the capillary stops at a specific pressure, with higher compression rates resulting in lower solidification pressures. Consequently, in regard to HPC measurements, it could be shown that the evaluation of the pressure via a pressure hole can lead to measurement errors in the limit range. Since the filling process in injection molding usually takes place under such transient conditions, the results are likely to be relevant for modelling the flow processes of thin-walled and microstructures with high aspect ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.