A statistical study of the cell dimensions in a growth ring of spruce along the radial and tangential directions is performed. The data are used to study the variation of the cell vapor permeability in the growth ring. Studying cell rows within one growth ring, the frequency distributions of the cell wall thickness in the radial direction and of the lumen dimension in the tangential direction are found to be both unimodal. In contrast, the frequency distributions of these dimensions in the other directions are bimodal, where the different modes can be attributed to earlywood and latewood. Analysis of the bimodal distributions results in the determination of threshold values of cell wall thickness and the lumen dimension for earlywood and latewood tracheids. The cell dimensions are used to predict cell porosity and water vapor permeability distribution within a growth ring. The bimodal frequency distributions of the tangential cell wall thickness and the radial lumen dimension provide an explanation for the observed bimodal frequency distribution of the cell water vapor permeability both in radial and in tangential directions. Contrary to measured macroscopic vapor permeability results, the tracheid geometry results in lower cell vapor permeability in radial than in tangential direction. This confirms that rays play an important role in the vapor permeability of D. Derome (&) Fluids and porous materials, EMPA, Ü berlandstrasse 129,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.