Phytases are a special class of phosphatase that catalyze the sequential hydrolysis of phytate to less-phosphorylated myo-inositol derivatives and inorganic phosphate. Phytases are added to animal feedstuff to reduce phosphate pollution in the environment, since monogastric animals such as pigs, poultry, and fish are unable to metabolize phytate. Based on biochemical properties and amino acid sequence alignment, phytases can be categorized into two major classes, the histidine acid phytases and the alkaline phytases. The histidine acid phosphatase class shows broad substrate specificity and hydrolyzes metal-free phytate at the acidic pH range and produces myo-inositol monophosphate as the final product. In contrast, the alkaline phytase class exhibits strict substrate specificity for the calcium-phytate complex and produces myo-inositol trisphosphate as the final product. This review describes recent findings that present novel viewpoints concerning the molecular basis of phytase classification.
Ndel1 and Nde1 are homologous and evolutionarily conserved proteins, with critical roles in cell division, neuronal migration, and other physiological phenomena. These functions are dependent on their interactions with the retrograde microtubule motor dynein and with its regulator Lis1--a product of the causal gene for isolated lissencephaly sequence (ILS) and Miller-Dieker lissencephaly. The molecular basis of the interactions of Ndel1 and Nde1 with Lis1 is not known. Here, we present a crystallographic study of two fragments of the coiled-coil domain of Ndel1, one of which reveals contiguous high-quality electron density for residues 10-166, the longest such structure reported by X-ray diffraction at high resolution. Together with complementary solution studies, our structures reveal how the Ndel1 coiled coil forms a stable parallel homodimer and suggest mechanisms by which the Lis1-interacting domain can be regulated to maintain a conformation in which two supercoiled alpha helices cooperatively bind to a Lis1 homodimer.
Phytate is an antinutritional factor that influences the bioavailability of essential minerals by forming complexes with them and converting them into insoluble salts. To further our understanding of the chemistry of phytate's binding interactions with biologically important metal cations, we determined the stoichiometry, affinity, and thermodynamics of these interactions by isothermal titration calorimetry. The results suggest that phytate has multiple Ca(2+)-binding sites and forms insoluble tricalcium- or tetracalcium-phytate salts over a wide pH range (pH 3.0-9.0). We overexpressed the β-propeller phytase from Hahella chejuensis (HcBPP) that hydrolyzes insoluble Ca(2+)-phytate salts. Structure-based sequence alignments indicated that the active site of HcBPP may contain multiple calcium-binding sites that provide a favorable electrostatic environment for the binding of Ca(2+)-phytate salts. Biochemical and kinetic studies further confirmed that HcBPP preferentially recognizes its substrate and selectively hydrolyzes insoluble Ca(2+)-phytate salts at three phosphate group sites, yielding the final product, myo-inositol 2,4,6-trisphosphate. More importantly, ITC analysis of this final product with several cations revealed that HcBPP efficiently eliminates the ability of phytate to chelate several divalent cations strongly and thereby provides free minerals and phosphate ions as nutrients for the growth of bacteria. Collectively, our results provide significant new insights into the potential application of HcBPP in enhancing the bioavailability and absorption of divalent cations.
Quorum sensing has been implicated as an important global regulatory system controlling the expression of numerous virulence factors in bacterial pathogens. SmcR, a homologue of Vibrio harveyi LuxR, has been proposed as a quorum-sensing master regulator of Vibrio vulnificus, an opportunistic human pathogen. Previous studies demonstrated that SmcR is essential for the survival and pathogenesis of V. vulnificus, indicating that inhibiting SmcR is an attractive approach to combat infections by the bacteria. Here, we determined the crystal structure of SmcR at 2.1 Å resolution. The protein structure reveals a typical TetR superfamily fold consisting of an N-terminal DNA binding domain and a C-terminal dimerization domain. In vivo and in vitro functional analysis of the dimerization domain suggested that dimerization of SmcR is vital for its biological regulatory function. The N-terminal DNA recognition and binding residues were assigned based on the protein structure and the results of in vivo and in vitro mutagenesis experiments. Furthermore, protein-DNA interaction experiments suggested that SmcR may have a sophisticated mechanism that enables the protein to recognize each of its many target operators with different affinities.
A Photobacterium strain, M37, showing lipolytic activity, was previously isolated from an intertidal flat of the Yellow Sea in Korea and identified as Photobacterium lipolyticum sp. nov. In the present study, the corresponding gene was cloned using the shotgun method. The amino acid sequence deduced from the nucleotide sequence (1,023 bp) corresponded to a protein of 340 amino acid residues with a molecular weight of 38,026. No sequence similarity was found with any known bacterial lipases/esterases; instead, the most similar enzymes were several filamentous fungal lipases. Although the similarity was very low (less than 16%), there were many conserved regions over the entire sequence and N-terminal oxyanion hole (RG) region, a signature sequence of filamentous fungal lipases. The novel protein M37 was produced in both a soluble and insoluble form when the Escherichia coli cells harboring the gene were cultured at 18 degrees C. The soluble protein exhibited lipase activity in a pH-stat assay using an olive oil emulsion. The M37 lipase also displayed a maximum activity at 25 degrees C and maintained its activity at a low temperature range (5-25 degrees C) with an activation energy (E(a)) of 2.07 kcal/mol. Accordingly, these results indicate that the M37 lipase from P. lipolyticum sp. nov. is a new cold-adapted enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.