Molecular and cellular effects of radiotherapy on tumor microenvironment (TME) can help prime and propagate antitumor immunity. We hypothesized that delivering radiation to all tumor sites could augment response to immunotherapies. We tested an approach to enhance response to immune checkpoint inhibitors (ICIs) by using targeted radionuclide therapy (TRT) to deliver radiation semiselectively to tumors. NM600, an alkylphosphocholine analog that preferentially accumulates in most tumor types, chelates a radioisotope and semiselectively delivers it to the TME for therapeutic or diagnostic applications. Using serial 86Y-NM600 positron emission tomography (PET) imaging, we estimated the dosimetry of 90Y-NM600 in immunologically cold syngeneic murine models that do not respond to ICIs alone. We observed strong therapeutic efficacy and reported optimal dose (2.5 to 5 gray) and sequence for 90Y-NM600 in combination with ICIs. After combined treatment, 45 to 66% of mice exhibited complete response and tumor-specific T cell memory, compared to 0% with 90Y-NM600 or ICI alone. This required expression of STING in tumor cells. Combined TRT and ICI activated production of proinflammatory cytokines in the TME, promoted tumor infiltration by and clonal expansion of CD8+ T cells, and reduced metastases. In mice bearing multiple tumors, combining TRT with moderate-dose (12 gray) external beam radiotherapy (EBRT) targeting a single tumor augmented response to ICIs compared to combination of ICIs with either TRT or EBRT alone. The safety of TRT was confirmed in a companion canine study. Low-dose TRT represents a translatable approach to promote response to ICIs for many tumor types, regardless of location.
BackgroundRheumatoid arthritis (RA) is a chronic autoimmune disease characterized by uncontrolled joint inflammation and destruction of bone and cartilage. We previously reported that C-X-C motif chemokine 10 (CXCL10; also called IP-10) has important roles in joint inflammation and bone destruction in arthritis. However, the specific mechanisms by which CXCL10 regulates the recruitment of inflammatory cells and the production of osteoclastogenic cytokines in RA progression are not fully understood.MethodsBone marrow-derived macrophages and CD4+ T cells were isolated from wild-type (WT), Cxcl10 –/–, and Cxcr3 –/– mice. CXCL10-induced migration was performed using a Boyden chamber, and CXCL10-stimulated production of osteoclastogenic cytokines was measured by quantitative real-time PCR and ELISA. Collagen antibody-induced arthritis (CAIA) was induced by administration of collagen type II antibodies and lipopolysaccharide to the mice. Clinical scores were analyzed and hind paws were collected for high-resolution micro-CT, and histomorphometry. Serum was used to assess bone turnover and levels of osteoclastogenic cytokines.ResultsCXCL10 increased the migration of inflammatory cells through C-X-C chemokine receptor 3 (CXCR3)-mediated, but not toll-like receptor 4 (TLR4)-mediated, ERK activation. Interestingly, both receptors CXCR3 and TLR4 were simultaneously required for CXCL10-stimulated production of osteoclastogenic cytokines in CD4+ T cells. Furthermore, calcineurin-dependent NFATc1 activation was essential for CXCL10-induced RANKL expression. In vivo, F4/80+ macrophages and CD4+ T cells robustly infiltrated into synovium of WT mice with CAIA but were significantly reduced in both Cxcl10 –/– and Cxcr3 –/– mice. Serum concentrations of osteoclastogenic cytokines and bone destruction were also reduced in the knockout mice, leading to attenuated progression of arthritis.ConclusionThese findings highlight the importance of CXCL10 signaling in the pathogenesis of RA and provide previously unidentified details of the mechanisms by which CXCL10 promotes the development of arthritis.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-017-1353-6) contains supplementary material, which is available to authorized users.
Amplification of the chemokines CXCL10 and RANKL has been suggested to promote osteoclast differentiation and osteolytic bone metastasis, but a function for endogenous CXCL10 in these processes is not well established. In this study, we show that endogenous CXCL10 is critical to recruit cancer cells to bone, support osteoclast differentiation and promote for the formation of osteolytic bone metastases. Neutralizing CXCL10 antibody reduced migration of cancer cells expressing the CXCL10 receptor CXCR3, and loss of CXCR3 or CXCL10 decreased bone tumor burden in vivo. Bone colonization augmented host production of CXCL10, which was required for cancer growth and subsequent osteolysis. Direct interactions between cancer cells and macrophages further stimulated CXCL10 production from macrophages. Growth of bone metastases required CXCL10-stimulated adhesion of cancer cells to type I collagen as well as RANKL-mediated osteoclast formation. Together, our findings show that CXCL10 facilitates trafficking of CXCR3-expressing cancer cells to bone, which augments its own production and promotes osteoclastic differentiation. CXCL10 therefore may represent a therapeutic target for osteolytic bone metastasis. Cancer Res; 72(13); 3175-86. Ó2012 AACR.
Radiation therapy (RT) activates an in situ vaccine effect when combined with immune checkpoint blockade (ICB), yet this effect may be limited because RT does not fully optimize tumor antigen presentation or fully overcome suppressive mechanisms in the tumor-immune microenvironment. To overcome this, we develop a multifunctional nanoparticle composed of polylysine, iron oxide, and CpG (PIC) to increase tumor antigen presentation, increase the ratio of M1:M2 tumor-associated macrophages, and enhance stimulation of a type I interferon response in conjunction with RT. In syngeneic immunologically “cold” murine tumor models, the combination of RT, PIC, and ICB significantly improves tumor response and overall survival resulting in cure of many mice and consistent activation of tumor-specific immune memory. Combining RT with PIC to elicit a robust in situ vaccine effect presents a simple and readily translatable strategy to potentiate adaptive anti-tumor immunity and augment response to ICB or potentially other immunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.