FeO-graphene/ZnO@mesoporous-SiO (MGZ@SiO) nanocomposites was synthesized via a simple one pot hydrothermal method. The as-obtained samples were investigated using various techniques, as follows: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and specific surface area (BET) vibrating sample magnetometer (VSM), among others. The sonocatalytic activities of the catalysts were tested according to the oxidation for the removal of methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultrasonic irradiation. The optimal conditions including the irradiation time, pH, dye concentration, catalyst dosage, and ultrasonic intensity are 60min, 11, 50mg/L, 1.00g/L, and 40W/m, respectively. The MGZ@SiO showed the higher enhanced sonocatalytic degradation from among the three dyes; furthermore, the sonocatalytic-degradation mechanism is discussed. This study shows that the MGZ@SiO can be applied asa novel-design catalyst for the removal of organic pollutants from aqueous solutions.
We discuss the effect of stray light on a high-precision camera in an LEO(Low Earth Orbit) satellite. The critical objects and illumination objects were sorted to discover the stray light sources in the optical system. Scatter modeling was applied to determine a noise effect on the surface of a detector, and the relative flux of a signal and noise were also calculated. The stable range of reflectivity of the beam splitter was estimated for various scattering models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.