Collaborative robots stand to have an immense impact both on human welfare in domestic service applications and industrial superiority in advanced manufacturing requires dexterous assembly. The outstanding challenge is providing robotic fingertips with a physical design that makes them adept at performing dexterous tasks that require high-resolution, calibrated shape reconstruction and force sensing. In this work, we present DenseTact 2.0, an optical-tactile sensor capable of visualizing the deformed surface of a soft fingertip and using that image in a neural network to perform both calibrated shape reconstruction and 6-axis wrench estimation. We demonstrate the sensor accuracy of 0.3633mm per pixel for shape reconstruction, 0.410N for forces, 0.387mmN •m for torques, and the ability to calibrate new fingers through transfer learning, achieving comparable performance that trained more than four times faster with only 12% of the dataset size.
Increasing the performance of tactile sensing in robots enables versatile, in-hand manipulation. Vision-based tactile sensors have been widely used as rich tactile feedback has been shown to be correlated with increased performance in manipulation tasks. Existing tactile sensor solutions with high resolution have limitations that include low accuracy, expensive components, or lack of scalability. In this paper, an inexpensive, scalable, and compact tactile sensor with high-resolution surface deformation modeling for surface reconstruction of the 3D sensor surface is proposed. By measuring the image from the fisheye camera, it is shown that the sensor can successfully estimate the surface deformation in real-time (1.8ms) by using deep convolutional neural networks. This sensor in its design and sensing abilities represents a significant step toward better object in-hand localization, classification, and surface estimation all enabled by high-resolution shape reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.