Despite its importance in cell proliferation and tumorigenesis, very little is known about the molecular mechanism underlying the regulation of phospholipase D (PLD) expression. PLD isozymes are significantly co-overexpressed with cancer marker genes in colorectal carcinoma. Phorbol 12-myristate 13-acetate (PMA) treatment, as a mitogenic signal in colon cancer cells, selectively increases PLD1 expression in transcription and posttranscription. Moreover, experiments using intraperitoneal injection of PMA into mice showed selective PLD1 induction in the intestine and lung tissues, which suggests its physiological relevance in vivo. Therefore, we have undertaken a detailed analysis of the effects of PMA on the promoter activity of PLD genes. Protein kinase C inhibitors, but not a protein kinase A inhibitor, were found to suppress the up-regulation of PLD1 but not PLD2. Dominant-negative mutants of Ras, Raf, and MEK suppressed the induction and activity of PLD1. Moreover, depletion of the supposedly involved proteins reduced the endogenous PLD1 protein level. An important role for NFB as a downstream target of ERK in PMA-induced PLD1 induction was also demonstrated using the inhibitor, small interfering RNA, chromatin immunoprecipitation assay, and site-specific mutagenesis. Furthermore, inhibitors of these signaling proteins and depletion of PLD1 suppressed PMA-induced matrix metalloproteinase-9 secretion and PLD1 induction. In conclusion, we demonstrate for the first time that induction of PLD1 through a protein kinase C/Ras/ERK/NFB-dependent pathway is involved in the secretion of matrix metalloproteinase-9 in colorectal cancer cells.
Cyclophilin B (CypB) performs diverse roles in living cells, but its role in hepatocellular carcinoma (HCC) is largely unclear. To reveal its role in HCC, we investigated the induction of CypB under hypoxia and its functions in tumor cells in vitro and in vivo. Here, we demonstrated that hypoxia-inducible factor 1a (HIF-1a) induces CypB under hypoxia. Interestingly, CypB protected tumor cells, even p53-defective HCC cells, against hypoxiaand cisplatin-induced apoptosis. Furthermore, it regulated the effects of HIF-1a, including those in angiogenesis and glucose metabolism, via a positive feedback loop with HIF-1a. The tumorigenic and chemoresistant effects of CypB were confirmed in vivo using a xenograft model. Finally, we showed that CypB is overexpressed in 78% and 91% of the human HCC and colon cancer tissues, respectively, and its overexpression in these cancers reduced patient survival. Conclusions: These results indicate that CypB induced by hypoxia stimulates the survival of HCC via a positive feedback loop with HIF-1a, indicating that CypB is a novel candidate target for developing chemotherapeutic agents against HCC and colon cancer.
Neurotensin (NT) is distributed throughout the brain and gastrointestinal tract. Although the relationship between NT and matrix metalloproteinase-9 (MMP-9) activity in gastric cancer has not been reported, the elevation of MMP-9 and NT is reported in the breast, lung, prostate, and gastric cancer. The aim of our study is to investigate the relationship between NT and MMP-9 activity and the underlying signaling mechanism in gastric cancer cell lines. Commercial ELISA kits were used for estimation of NT and MMP-9 expression, and fluorescence resonance energy transfer (FRET) assay was used for measurement of MMP-9 activity. Cell migration and invasion were determined by wound healing and transwell assay. The expression of signaling proteins was measured by Western blotting. Our study reveals a positive correlation between increased plasma NT and MMP-9 activity in both of patient's serum and gastric cancer cell lines. A dose-dependent elevation of MMP-9 activity was observed by NT treatment in gastric cancer cells (MKN-1 and MKN-45) compared to untreated gastric cancer and normal epithelial cell (HFE-145). Moreover, NT-mediated migration and invasion were observed in gastric cancer cells unlike in normal cell. The signaling mechanism of NT in gastric cancer cells was confirmed in protein kinase C (PKC), extracellular-signal regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K) pathway. In addition, pretreatment of gastric cancer cells with NTR1 inhibitor SR48692 was shown to significantly inhibit the NT-mediated MMP-9 activity, cell invasion, and migration. Our finding illustrated NTR1 could be a possible therapeutic target for gastric cancer.
No abstract
Triple A syndrome is a rare genetic disorder caused by mutations in the achalasia-addisonianism-alacrima syndrome (AAAS ) gene which encodes a tryptophan aspartic acid (WD) repeat-containing protein named alacrima-achalasia-adrenal insufficiency neurologic disorder (ALADIN). Northern blot analysis shows that the 2.1 kb AAAS mRNA is expressed in various tissues with stronger expression in testis and pancreas. We show that human ALADIN is a protein with an apparent molecular weight of 60 kDa, and expressed in the adrenal gland, pituitary gland and pancreas. Furthermore, biochemical analysis using anti-ALADIN antibody supports the previous finding of the localization of ALADIN in the nuclear membrane. The mutations S544G and S544X show that alteration of S544 residue affects correct targeting of ALADIN to the nuclear membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.