We showed that RARP in the setting of oligometastatic PCa is a safe and feasible procedure which improves oncological outcomes in terms of PFS and CSS. In addition, our data suggest that RARP effectively prevents urinary tract complications from PCa. The study highlights results from expert surgeons and highly selected patients that cannot be extrapolated to all patients with oligometastatic PCa; to confirm our findings, large, prospective, multicentre studies are required.
Groundwater management and protection has been facilitated by computational modeling of aquifer vulnerability and monitoring aquifers using groundwater sampling. The DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity) model, an overlay and index GIS model, has been used for groundwater quality assessment because it relies on simple, straightforward methods. Aquifer vulnerability mapping identifies areas with high pollution potential that can be areas for priority management and monitoring. The objectives of this study are to demonstrate how aquifer vulnerability assessment can be achieved using DRASTIC with high resolution data. This includes calibrating DRASTIC weights using a binary classifier calibration method with a genetic algorithm (Bi-GA), identifying areas of high potential aquifer vulnerability, and selecting potential aquifer monitoring sites using spatial statistics. The aquifer vulnerability results from DRASTIC using Bi-GA were validated with a well database of observed nitrate concentrations for a study area in Indiana. The DRASTIC results using Bi-GA showed that approximately 42.2% of nitrate detections >2 ppm are within "High" and "Very high" vulnerability areas (representing 3.4% of study area) as simulated by DRASTIC. Moreover, 53.4% of the nitrate detections were within the "Moderate" vulnerability class (26.9% of study area), and only 4.3% of the nitrate detections were within the "Low" vulnerability class (60.1% of study area). Nitrates > 2 ppm were not detected at all within the "Very low" vulnerability class (9.6% of area). "High" and "Very high" vulnerability areas should be regarded as priority areas for groundwater monitoring and efforts to prevent groundwater contamination. This case study suggests that the approach may be applicable to other areas as part of efforts to target groundwater management efforts.
BackgroundThe pretreatment neutrophil-to-lymphocyte ratio has prognostic value after radical prostatectomy for treating localized prostate cancer. However, the use of postoperative neutrophil-to-lymphocyte ratio has not been evaluated in this population. We investigated the prognostic significance of early postoperative neutrophil-to-lymphocyte ratio after radical prostatectomy for prostate cancer.MethodsWe retrospectively reviewed clinical data from 2,302 patients with localized prostate cancer who underwent radical prostatectomy at our institution between years 2000 and 2010. Only patients with pre- and postoperative complete blood counts with differential results were included. Patients who received neoadjuvant or postoperative adjuvant treatment and those without adequate medical records were excluded. Kaplan-Meier analyses were performed to analyze biochemical recurrence-free survival and overall survival rates. Univariate and multivariate Cox regression models were used for each endpoint.ResultsKaplan-Meier curves showed that high postoperative neutrophil-to-lymphocyte ratio (>3.5) was significantly associated with decreased biochemical recurrence-free survival (p = 0.009) and overall survival (p = 0.010). In the univariate and multivariate Cox regression analyses, high postoperative neutrophil-to-lymphocyte ratio was a significant predictor of biochemical recurrence (hazard ratio 1.270, p = 0.008) and overall survival (hazard ratio 1.437, p = 0.033).ConclusionsOur results demonstrate that postoperative neutrophil-to-lymphocyte ratio is an independent factor for biochemical recurrence and overall survival in patients who underwent radical prostatectomy for prostate cancer. These findings suggest that neutrophil-to-lymphocyte ratio can be a potentially valuable tool for stratifying high-risk patients and facilitating choices of postoperative therapy in patients with prostate cancer.
Some early-stage clear cell renal cell carcinomas (ccRCCs) of ≤7 cm are associated with a poor clinical outcome. In this study, we investigated molecular biomarkers associated with aggressive clinical T1 stage ccRCCs of ≤7 cm, which were used to develop a risk prediction tool toward guiding the decision of treatment. Among 1069 nephrectomies performed for ccRCC of ≤7 cm conducted between January 2008 and December 2014, 177 cases with available formalin-fixed paraffin-embedded tissue were evaluated. An aggressive tumor was defined as a tumor exhibiting synchronous metastasis, recurrence, or leading to cancer-specific death. Expression levels of six genes (FOXC2, CLIP4, PBRM1, BAP1, SETD2, and KDM5C) were measured by reverse-transcription polymerase chain reaction (qRT-PCR) and their relation to clinical outcomes was investigated. Immunohistochemistry was performed to validate the expression profiles of selected genes significantly associated with clinical outcomes in multivariate analysis. Using these genes, we developed a prediction model of aggressive ccRCC based on logistic regression and deep-learning methods. FOXC2, PBRM1, and BAP1 expression levels were significantly lower in aggressive ccRCC than non-aggressive ccRCC both in univariate and multivariate analysis. The immunohistochemistry result demonstrated the significant downregulation of FOXC2, PBRM1, and BAP1 expression in aggressive ccRCC. Adding immunohistochemical staining results to qRT-PCR, the aggressive ccRCC prediction models had the area under the curve (AUC) of 0.760 and 0.796 and accuracy of 0.759 and 0.852 using the logistic regression method and deep-learning method, respectively. Use of these biomarkers and the developed prediction model can help stratify patients with clinical T1 stage ccRCC.
The prognosis for ductal adenocarcinoma can be stratified by the proportion of the ductal component. This marker could potentially be used as a surrogate for poor prognosis or as a determinant for adjuvant therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.