This paper evaluates the feasibility and potential impact on overall engine performance when utilizing the heat sink sources available in a gas turbine engine for improved turbine thermal management. A study was conducted to assess the application of a heat exchanger to cool the compressor bleed air normally used air for cooling turbine machinery. The design tradeoffs of this cooled cooling air approach as we’ll as the methodology used to make the performance assessment will be addressed.
The results of this study show that the use of a cooled cooling air (CCA) system can make a positive impact on overall engine performance. Minimizing the complexity and weight of the CCA system, while utilizing advanced, high temperature materials currently under development provide the best overall solution in terms of design risk and engine performance.
A simple theoretical model based on combined series and parallel conduction for the effective thermal conductivity of fluid-saturated screens has been developed. The present model has been compared with the existing correlations and experimental data available in literature, and it has been found that the model is effective in predicting thermal conductivity. The study also demonstrates that it is important to include the actual thickness of the wire screen in order to calculate the porosity accurately.
A modified 3-omega method applied to a suspended platinum microwire was employed to measure the thermal conductivity and convective heat transfer coefficient of a water-based single-walled carbon nanotube (CNT) solution (metallic single-wall nanotubes with 1.33 nm diameter and 1.14 wt% concentration), and an expression for calculating the convective heat transfer coefficient in such a free convective fluid was introduced. The measurement technique was validated for three model systems including vacuum, air and deionized water. It is found that there is excellent agreement between these three model systems with theoretical predictions. In addition, the frequency dependence on the third harmonic response measured in deionized water reveals the existence of a very low working frequency below 60 mHz. The thermal conductivity and convective heat transfer coefficient of the nanofluid (water-based single-wall CNT solution) were determined to be 0.73 +/- 0.013 W m(-1) K(-1) and 14 900 +/- 260 W m(-2) K(-1), respectively, which correspond to an enhancement of 19.4% in thermal conductivity and 18.9% in convective heat transfer as compared to water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.