The RENO experiment has observed the disappearance of reactor electron antineutrinos, consistent with neutrino oscillations, with a significance of 4.9 standard deviations. Antineutrinos from six 2.8 GW(th) reactors at the Yonggwang Nuclear Power Plant in Korea, are detected by two identical detectors located at 294 and 1383 m, respectively, from the reactor array center. In the 229 d data-taking period between 11 August 2011 and 26 March 2012, the far (near) detector observed 17102 (154088) electron antineutrino candidate events with a background fraction of 5.5% (2.7%). The ratio of observed to expected numbers of antineutrinos in the far detector is 0.920±0.009(stat)±0.014(syst). From this deficit, we determine sin(2)2θ(13)=0.113±0.013(stat)±0.019(syst) based on a rate-only analysis.
The RENO experiment has analyzed about 500 live days of data to observe an energy dependent disappearance of reactor νe by comparison of their prompt signal spectra measured in two identical near and far detectors. In the period between August 2011 and January 2013, the far (near) detector observed 31541 (290775) electron antineutrino candidate events with a background fraction of 4.9% (2.8%). The measured prompt spectra show an excess of reactor νe around 5 MeV relative to the prediction from a most commonly used model. A clear energy and baseline dependent disappearance of reactor νe is observed in the deficit of the observed number of νe. Based on the measured far-to-near ratio of prompt spectra, we obtain sin 2 2θ13 = 0. The reactor ν e disappearance has been firmly observed to determine the smallest neutrino mixing angle θ 13 [1-3]. All of the three mixing angles in the Pontecorvo-MakiNakagawa-Sakata matrix [4,5] have been measured to provide a comprehensive picture of neutrino transformation. The successful measurement of a rather large θ 13 value opens the possibility of searching for CP violation in the leptonic sector and determining the neutrino mass ordering. Appearance of ν e from an accelerator ν µ beam is also observed by the T2K [6] and NOνA [7] experiments.Using the ν e survival probability P [8], reactor experiments with a baseline distance of ∼1 km can determine the mixing angle θ 13 and an effective squared-massdifference ∆m where ∆ ij ≡ 1.267∆m 2 ij L/E, E is the ν e energy in MeV, and L is the distance between the reactor and detector in meters.The first measurement of θ 13 by RENO was based on the rate-only analysis of deficit found in ∼220 live days of data [1]. The oscillation frequency |∆m 2 ee | in the measurement was approximated by the measured value |∆m 2 31 | assuming the normal ordering in the ν µ disappearance [10]. In this Letter, we present a more precisely measured value of θ 13 and our first determination of |∆m 2 ee |, based on the rate, spectral and baseline information (rate+spectrum analysis) of reactor ν e disappearance using ∼500 live days of data. The Daya Bay collaboration has also reported spectral measurements [11].The RENO uses identical near and far ν e detectors located at 294 m and 1383 m, respectively, from the center of six reactor cores of the Hanbit (known as Yonggwang) Nulcear Power Plant. The far (near) detector is under a 450 m (120 m) of water equivalent overburden. Six pressurized water reactors, each with maximum thermal output of 2.8 GW th , are situated in a linear array spanning 1.3 km with equal spacings. The reactor flux-weighted baseline is 410.6 m for the near detector and 1445.7 m for the far detector.The reactor ν e is detected through the inverse beta decay (IBD) interaction, ν e + p → e + + n, with free protons in hydrocarbon liquid scintillator (LS) with 0.1% Gadolinium (Gd) as a target. The coincidence of a prompt positron signal and a mean time of ∼28 µs delayed signal from neutron capture by Gd (n-Gd) provides the distinctive IBD signatur...
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.
The Reactor Experiment for Neutrino Oscillation (RENO) has been taking electron antineutrino (ν e ) data from the reactors in Yonggwang, Korea, using two identical detectors since August 2011. Using roughly 500 live days of data through January 2013 we observe 290 775 (31 514) reactorν e candidate events with 2.8% (4.9%) background in the near (far) detector. The observed visible positron spectra from the reactorν e events in both detectors show a discrepancy around 5 MeV with regard to the prediction from the current reactorν e model. Based on a far-to-near ratio measurement using the spectral and rate information, we have obtained sin 2 2θ 13 ¼ 0.082 AE 0.009ðstat:Þ AE 0.006ðsyst:Þ and jΔm
Bacterial adhesion to stainless steel 316L (SS316L), which is an alloy typically used in many medical devices and food processing equipment, can cause serious infections along with substantial healthcare costs. This work demonstrates that nanotextured SS316L surfaces produced by electrochemical etching effectively inhibit bacterial adhesion of both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, but exhibit cytocompatibility and no toxicity toward mammalian cells in vitro. Additionally, the electrochemical surface modification on SS316L results in formation of superior passive layer at the surface, improving corrosion resistance. The nanotextured SS316L offers significant potential for medical applications based on the surface structure-induced reduction of bacterial adhesion without use of antibiotic or chemical modifications while providing cytocompatibility and corrosion resistance in physiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.