SiO2 etching characteristics were investigated in detail. Patterned SiO2 was etched using radio-frequency capacitively coupled plasma with pulse modulation in a mixture of argon and fluorocarbon gases. Through plasma diagnostic techniques, plasma parameters (radical and electron density, self-bias voltage) were also measured. In this work, we identified an etching process window, where the etching depth is a function of the radical flux. Then, pulse-off time was varied in the two extreme cases: the lowest and the highest radical fluxes. It was observed that increasing pulse-off time resulted in an enhanced etching depth and the reduced etching depth respectively. This opposing trend was attributed to increasing neutral to ion flux ratio by extending pulse-off time within different etching regimes.
One of the cleaning processes in semiconductor fabrication is the ashing process using oxygen plasma, which has been normally used N2 gas as additive gas to increase the ashing rate, and it is known that the ashing rate is strongly related to the concentration of oxygen radicals measured OES. However, by performing a comprehensive experiment of the O2 plasma ashing process in various N2/O2 mixing ratios and RF powers, our investigation revealed that the tendency of the density measured using only OES did not exactly match the ashing rate. This problematic issue can be solved by considering the plasma parameter, such as electron density. This study can suggest a method inferring the exact maximum condition of the ashing rate based on the plasma diagnostics such as OES, Langmuir probe, and cutoff probe, which might be useful for the next-generation plasma process.
Recently, the uniformity in the wafer edge area that is normally abandoned in the fabrication process has become important for improving the process yield. The wafer edge structure normally has a difference of height between wafer and electrode, which can result in a sheath bend, distorting important parameters of the etch, such as ionic properties, resulting in nonuniform etching. This problem nowadays is resolved by introducing the supplemented structure called a focus ring on the periphery of the wafer. However, the focus ring is known to be easily eroded by the bombardment of high-energy ions, resulting in etch nonuniformity again, so that the focus ring is a consumable part and must be replaced periodically. Because of this issue, there are many simulation studies being conducted on the correlation between the sheath structural characteristics and materials of focus rings to find the replacement period, but the experimental data and an analysis based on this are not sufficient yet. In this study, in order to experimentally investigate the etching characteristics of the wafer edge area according to the sheath structure of the wafer edge, the etching was performed by increasing the wafer height (thickness) in the wafer edge area. The result shows that the degree of tilt in the etch profile at the wafer edge and the area where the tilt is observed severely are increased with the height difference between the wafer and electrode. This study is expected to provide a database for the characteristics of the etching at the wafer edge and useful information regarding the tolerance of the height difference for untilted etch profile and the replacement period of the etch ring.
As the analysis of complicated reaction chemistry in bulk plasma has become more important, especially in plasma processing, quantifying radical density is now in focus. For this work, appearance potential mass spectrometry (APMS) is widely used; however, the original APMS can produce large errors depending on the fitting process, as the fitting range is not exactly defined. In this research, to reduce errors resulting from the fitting process of the original method, a new APMS approach that eliminates the fitting process is suggested. Comparing the neutral densities in He plasma between the conventional method and the new method, along with the real neutral density obtained using the ideal gas equation, confirmed that the proposed quantification approach can provide more accurate results. This research will contribute to improving the precision of plasma diagnosis and help elucidate the plasma etching process.
As the process complexity has been increased to overcome challenges in plasma etching, individual control of internal plasma parameters for process optimization has attracted attention. This study investigated the individual contribution of internal parameters, the ion energy and flux, on high-aspect ratio SiO2 etching characteristics for various trench widths in a dual-frequency capacitively coupled plasma system with Ar/C4F8 gases. We established an individual control window of ion flux and energy by adjusting dual-frequency power sources and measuring the electron density and self-bias voltage. We separately varied the ion flux and energy with the same ratio from the reference condition and found that the increase in ion energy shows higher etching rate enhancement than that in the ion flux with the same increase ratio in a 200 nm pattern width. Based on a volume-averaged plasma model analysis, the weak contribution of the ion flux results from the increase in heavy radicals, which is inevitably accompanied with the increase in the ion flux and forms a fluorocarbon film, preventing etching. At the 60 nm pattern width, the etching stops at the reference condition and it remains despite increasing ion energy, which implies the surface charging-induced etching stops. The etching, however, slightly increased with the increasing ion flux from the reference condition, revealing the surface charge removal accompanied with conducting fluorocarbon film formation by heavy radicals. In addition, the entrance width of an amorphous carbon layer (ACL) mask enlarges with increasing ion energy, whereas it relatively remains constant with that of ion energy. These findings can be utilized to optimize the SiO2 etching process in high-aspect ratio etching applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.