Replacing noble-metal-based oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts is the key to developing efficient Zn-air batteries (ZABs). Here, a homogeneous ternary Ni Co Fe nanoalloy with a size distribution of 30-60 nm dispersed in a carbon matrix (denoted as C@NCF-900) as a highly efficient bifunctional electrocatalyst produced via supercritical reaction and subsequent heat treatment at 900 °C is reported. Among all the transition-metal-based electrocatalysts, the C@NCF-900 exhibits the highest ORR performance in terms of half-wave potential (0.93 V) in 0.1 m KOH. Moreover, C@NCF-900 exhibits negligible activity decay after 10 000 voltage cycles with minor reduction (0.006 V). In ZABs, C@NCF-900 outperforms the mixture of Pt/C 20 wt% and IrO , cycled over 100 h under 58% depth of discharge condition. Furthermore, density functional theory (DFT) calculations and in situ X-ray absorption spectroscopy strongly support the active sites and site-selective reaction as a plausible ORR/OER mechanism of C@NCF-900.
With a recent increase in interest in metal-gas batteries, the lithium-carbon dioxide cell has attracted considerable attention because of its extraordinary carbon dioxide-capture ability during the discharge process and its potential application as a power source for Mars exploration. However, owing to the stable lithium carbonate discharge product, the cell enables operation only at low current densities, which significantly limits the application of lithium-carbon dioxide batteries and effective carbon dioxide-capture cells. Here, we investigate a high-performance lithium-carbon dioxide cell using a quinary molten salt electrolyte and ruthenium nanoparticles on the carbon cathode. The nitrate-based molten salt electrolyte allows us to observe the enhanced carbon dioxide-capture rate and the reduced dischargecharge over-potential gap with that of conventional lithium-carbon dioxide cells. Furthermore, owing to the ruthernium catalyst, the cell sustains its performance over more than 300 cycles at a current density of 10.0 A g −1 and exhibits a peak power density of 33.4 mW cm −2 .
Microscale lasers efficiently deliver coherent photons into small volumes for intracellular biosensors and all-photonic microprocessors. Such technologies have given rise to a compelling pursuit of ever-smaller and ever-more-efficient microlasers. Upconversion microlasers have great potential owing to their large anti-Stokes shifts but have lagged behind other microlasers due to their high pump power requirement for population inversion of multiphoton-excited states. Here, we demonstrate continuous-wave upconversion lasing at an ultralow lasing threshold (4.7 W cm−2) by adopting monolithic whispering-gallery-mode microspheres synthesized by laser-induced liquefaction of upconversion nanoparticles and subsequent rapid quenching (“liquid-quenching”). Liquid-quenching completely integrates upconversion nanoparticles to provide high pump-to-gain interaction with low intracavity losses for efficient lasing. Atomic-scale disorder in the liquid-quenched host matrix suppresses phonon-assisted energy back transfer to achieve efficient population inversion. Narrow laser lines were spectrally tuned by up to 3.56 nm by injection pump power and operation temperature adjustments. Our low-threshold, wavelength-tunable, and continuous-wave upconversion microlaser with a narrow linewidth represents the anti-Stokes-shift microlaser that is competitive against state-of-the-art Stokes-shift microlasers, which paves the way for high-resolution atomic spectroscopy, biomedical quantitative phase imaging, and high-speed optical communication via wavelength-division-multiplexing.
Explosion dynamics
of confined nitromethane (NM) fluid has been
investigated by using nonequilibrium reactive molecular dynamics.
For the confinement, NM was encapsulated into a nanocontainer, which
is the capped (20, 20) armchair carbon nanotube (CNT). After thermal
energy was injected into confined NM at various densities, the nanobomb
consisting of NM and CNT was fully decomposed including bursting phenomena.
We found that the time for explosion was reduced as density and initial
temperature increased. While NM was being decomposed into intermediates,
defects of Stone–Wales type (5–7 carbon atoms ring)
or high-order rings were randomly formed at the cap and side wall
of CNT. Subsequently, the intermediates functionalized carbon atoms
at the defects, from which nanoholes were evolved. The CNT burst when
the size of nanohole became about 8 Å. Further, we demonstrated
that defective CNT with vacancy exploded faster because carbon atoms
at defect sites played a seed role to make nanoholes. This theoretical
study, which is related to nanoscale explosion, provides a new insight
into confined NM system to apply for a small-size target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.