Hematite has a great potential as a photoanode for photoelectrochemical (PEC) water splitting by converting solar energy into hydrogen fuels, but the solar-to-hydrogen conversion efficiency of state-of-the-art hematite photoelectrodes are still far below the values required for practical hydrogen production. Here, we report a core-shell formation of gradient tantalum-doped hematite homojunction nanorods by combination of hydrothermal regrowth strategy and hybrid microwave annealing, which enhances the photocurrent density and reduces the turn-on voltage simultaneously. The unusual bi-functional effects originate from the passivation of the surface states and intrinsic built-in electric field by the homojunction formation. The additional driving force provided by the field can effectively suppress charge–carrier recombination both in the bulk and on the surface of hematite, especially at lower potentials. Moreover, the synthesized homojunction shows a remarkable synergy with NiFe(OH)x cocatalyst with significant additional improvements of photocurrent density and cathodic shift of turn-on voltage. The work has nicely demonstrated multiple collaborative strategies of gradient doping, homojunction formation, and cocatalyst modification, and the concept could shed light on designing and constructing the efficient nanostructures of semiconductor photoelectrodes in the field of solar energy conversion.
A simple electrochemical activation treatment is proposed to improve effectively the photoelectrochemical performance of Nb,Sn co-doped hematite nanorods. The activation process involves an initial thrice cathodic scanning (reduction) and a subsequent thrice anodic scanning (oxidation), which modifies both the surface and bulk properties of the Nb,Sn:Fe 2 O 3 photoanode. First, it selectively removes the surface components to different extents endowing the hematite surface with fewer defects and richer Nb-O and Sn-O bonds and thus passivates the surface trap states. The surface passivation effect also enhances the photoelectrochemical stability of the photoanode. Finally, more Fe 2+ ions or oxygen vacancies are generated in the bulk of hematite to enhance its conductivity. As a result, the photocurrent density is increased by 62.3% from 1.88 to 3.05 mA cm À2 at 1.23 V RHE , the photocurrent onset potential shifts cathodically by $70 mV, and photoelectrochemical stability improves remarkably relative to the pristine photoanode under simulated sunlight (100 mW cm À2 ). Fig. 3 XPS spectra of the pristine and activated Nb,Sn:Fe 2 O 3 photoanode before and after surface etching ($5 nm), respectively. (a 0 and a 1 ) Fe 2p. (b 0 and b 1 ) O 1s. (c 0 and c 1 ) Nb 3d. (d 0 and d 1 ) Sn 3d.This journal is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.