Five phosphate-solubilizing bacteria (PSB) used in this study were isolated based on their ability to solubilize tricalcium phosphate (TCP) in Pikovskaya's medium. Among the tested bacterial strains Burkholderia sp. strain CBPB-HIM showed the highest solubilization (363 lg of soluble P ml -1 ) activity at 48 h of incubation. Further, this strain has been selected to assess its shelf life in nutrient-amended and -unamended clay, rice bran and rock phosphate (RP) pellet-based granular formulation. The results showed that the maximum viability of bacterium was observed in clay and rice bran (1:1) + 10% RP pellets than clay-RP pellets, irrespective of tested storage temperatures. Further, clay and rice bran (1:1) + 10% RP pellets amended with 1% glucose supported the higher number of cells compared to glycerol-amended and nutrient-unamended pellets. In this carrier solubilization of Morocco rock phosphate (MRP) by Burkholderia sp. strain CBPB-HIM was also investigated. The maximum of water and bicarbonate extractable P (206 and 245 lg P g -1 of pellet respectively) was recorded in clay and rice bran (1:1) + 10% RP pellets amended with 1% glucose and glycerol respectively on day 5 of incubation. Therefore, this study proved the possibility of developing granular inoculant technology combining clay, rice bran and RP as substrates with phosphate-solubilizing Burkholderia.
Cold-adapted bacteria survive in extremely cold temperature conditions and exhibit various mechanisms of adaptation to sustain their regular metabolic functions. These adaptations include several physiological and metabolic changes that assist growth in a myriad of ways. Successfully sensing of the drop in temperature in these bacteria is followed by responses which include changes in the outer cell membrane to changes in the central nucleoid of the cell. Their survival is facilitated through many ways such as synthesis of cryoprotectants, cold acclimation proteins, cold shock proteins, RNA degradosomes, Antifreeze proteins and ice nucleators. Agricultural productivity in cereals and legumes under low temperature is influenced by several cold adopted bacteria including Pseudomonas, Acinetobacter, Burkholderia, Exiguobacterium, Pantoea, Rahnella, Rhodococcus and Serratia. They use plant growth promotion mechanisms including production of IAA, HCN, and ACC deaminase, phosphate solublization and biocontrol against plant pathogens such as Alternaria, Fusarium, Sclerotium, Rhizoctonia and Pythium.
Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time-and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.