A new simple drying process was developed in order to prepare a metallic nanocatalysts/Nafion for self-humidifying membrane in a proton-exchange membrane fuel cell (PEMFC). Metallic precursors such as platinum(ll) bis(acetylacetonate) or palladium(ll) bis(acetylacetonate) was sublimed and simultaneously penetrated into the surface of a Nafion film. And then it was reduced to Pt or Pd nanoparticles beneath the film surface without a special reducing agent in a glass reactor of N2 atmosphere at 180 degrees C for 5, 10, 30 and 60 min, respectively. The morphology and distribution of the Pt or Pd nanoparticles were observed by transmission electron microscopy (TEM) and elemental analysis was carried out by an energy dispersive spectroscopy (EDS), and we found that the penetration depth of the metallic nanoparticles and the particle sizes increased with increasing exposure time to the metallic precursors, and the particle size at the surface area was larger than that at the deeper area.
>> Highly conductive bipolar plate for polymer electrolyte membrane fuel cell (PEMFC) was prepared using phenol novolac-type epoxy/graphite powder (GP)/carbon fiber filament (CFF) composite, and a rubber-modified epoxy resin was introduced in order to give elasticity to the bipolar plate graphite fiber (GF) was incorporated in order to improve electrical conductivity. To find out the cure condition of the mixture of novolac-type and rubber-modified epoxies, differential scanning calorimetry (DSC) was carried out and their data were introduced to Kissinger equation. And tensile and flexural tests were carried out using universal testing machine (UTM) and the surface morphology of the fractured specimen and the interfacial bonding between epoxy matrix and CFF or GF were observed by a scanning electron microscopy (SEM).
Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.
>> A simple dry chemical approach was developed in order to load palladium (Pd) as a promoter on Pt/gas diffusion electrode (GDE) for polymer electrolyte membrane fuel cell (PEMFC). Palladium(II) bis (acetylacetonate), Pd(acac)2 was sublimed, penetrated into Pt/GDE and then reduced to Pd nanoparticles simultaneously without any reducing agent and any solvent in a glass reactor of N2 atmosphere at 180°C for 3, 5 and 15 min. Pd distribution was analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), and I-V curve was estimated by using a unit cell with 5×5 cm 2 active area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.