AIMTo investigate the effects of Lizhong Tang, a traditional Chinese medicine formula, on gastrointestinal motility in mice.METHODSThe in vivo effects of Lizhong Tang on GI motility were investigated by measuring the intestinal transit rates (ITRs) and gastric emptying (GE) values in normal mice and in mice with experimentally induced GI motility dysfunction (GMD).RESULTSIn normal ICR mice, the ITR and GE values were significantly and dose-dependently increased by Lizhong Tang (ITR values: 54.4% ± 1.9% vs 65.2% ± 1.8%, P < 0.01 with 0.1 g/kg Lizhong Tang and 54.4% ± 1.9% vs 83.8% ± 1.9%, P < 0.01 with 1 g/kg Lizhong Tang; GE values: 60.7% ± 1.9% vs 66.8% ± 2.1%, P < 0.05 with 0.1 g/kg Lizhong Tang and 60.7% ± 1.9% vs 72.5% ± 1.7%, P < 0.01 with 1 g/kg Lizhong Tang). The ITRs of the GMD mice were significantly reduced compared with those of the normal mice, which were significantly and dose-dependently reversed by Lizhong Tang. Additionally, in loperamide- and cisplatin-induced models of GE delay, Lizhong Tang administration reversed the GE deficits.CONCLUSIONThese results suggest that Lizhong Tang may be a novel candidate for development as a prokinetic treatment for the GI tract.
Background:“Decocting later” is important procedure for the extraction of herbal medicines containing volatile compounds.Objective:This study was performed to investigate optimal conditions for “Decocting later” of Menthae herba in Eungyo-san (EGS) and correlation between extraction variables and the yields of d/l-menthol, a marker compound of Menthae herba.Materials and Methods:The decocting temperature, total decocting time, and decocting later time were chosen as individual variables, and the yield of d/l-menthol was set as the response value which were calculated by using a Box-Behnken design (BBD). The amount of d/l-menthol was quantified using gas chromatography/mass spectrometry.Results:Response surface methodology (RSM) was used to predict optimal conditions for decocting later of Menthae herba into the formula. Optimal conditions for “Decocting later” from RSM were as follows: 100.63°C of decocting temperature; 82.95 min of total decocting time; 19.11 min of decocting later time. Both decocting temperature and total decocting time showed significant correlation with the yield of d/l-menthol.Conclusions:These results suggest that the decocting temperature and total decocting time were influential factors, and RSM can be applied for optimizing the conditions of “Decocting later” of Menthae herba in EGS.SUMMARY Gas chromatography/mass spectrometry method developed was applied to quantify the d/l-menthol, a volatile compound in Menthae Herba, in Eungyo-san decoction (EGS)d/l-Menthol was extracted in the chloroform layer of the partition between EGS decoction and chloroformA Box-Behnken design produced the predicted response values (yield of d/l-menthol in EGS) from the actual response values with individual variables including decocting temperature, total decocting time, and decocting later timeOptimal conditions for “Decocting later” of Menthae Herba in EGS obtained from the response surface methodology were 100.63°C of decocting temperature, 82.95 min of total decocting time, and 19.11 min of decocting later time. Abbreviations used: KM: Korean medicine; EGS: Eungyo-san; GC/MS: Gas chromatography/mass spectrometry; RSM: Response surface methodology; SIM: Selected ion monitoring; LOD: Limits of determination; LOQ: Limits of quantification; RSD: Relative standard deviation; ANOVA: Analysis of variance; BBD: Box-Behnken design.
Objectives : Ijung-tang (IJT) is a traditional herbal formula and has been used to treat digestive diseases such as abdominal pain, vomiting, and diarrhea. IJT consists of four herbal medicines, Ginseng radix, Atractylodis rhizoma alba, Zingiberis rhizoma, and Glycyrrhizae radix et rhizoma, containing various bioactive compounds. Quality assesment of IJT preparations was performed by analytical method for determining marker compounds. Methods : Determination of seven marker compounds in IJT preparations was quantitatively conducted by highperformance liquid chromatography equipped with a diode-array detector. The marker compounds were separated on a reversed-phase C18 column and the analytical method was successfully validated. Chemometric analysis was performed to compare IJT water extracts and commercial IJT granules. Results : Limit of detection and limit of quantification values were in the ranges of 0.093-2.649 μg/mL and 0.283-8.027 μg/mL, respectively. Precisions were 0.30-3.87% within a day and 0.23-2.35% over three consecutive days. Recoveries of the marker compounds ranged from 87.35-107.05%, with relative standard deviation (RSD) values < 6.15%. Repeatabilities were < 1.20% and < 1.71% of RSD value for retention time and absolute peak area, respectively. The results from quantitative analysis showed that the quantities of seven marker compounds of IJT samples varied, as were found in principal component analysis and hierarchical clustering analysis. Conclusions : The analytical method developed in the present study was precise and reliable to simultaneously determine marker compounds of IJT. Therefore, it can be used for the quality assessment of IJT preparations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.