Intracellular delivery of macromolecules is a challenge in research and therapeutic applications. Existing vector-based and physical methods have limitations, including their reliance on exogenous materials or electrical fields, which can lead to toxicity or off-target effects. We describe a microfluidic approach to delivery in which cells are mechanically deformed as they pass through a constriction 30-80% smaller than the cell diameter. The resulting controlled application of compression and shear forces results in the formation of transient holes that enable the diffusion of material from the surrounding buffer into the cytosol. The method has demonstrated the ability to deliver a range of material, such as carbon nanotubes, proteins, and siRNA, to 11 cell types, including embryonic stem cells and immune cells. When used for the delivery of transcription factors, the microfluidic devices produced a 10-fold improvement in colony formation relative to electroporation and cell-penetrating peptides. Indeed, its ability to deliver structurally diverse materials and its applicability to difficult-to-transfect primary cells indicate that this method could potentially enable many research and clinical applications.drug delivery | induced pluripotent stem cells | reprogramming | protein delivery | nanoparticle delivery I ntracellular delivery of macromolecules is a critical step in therapeutic and research applications. Nanoparticle-mediated delivery of DNA and RNA, for example, is being explored for gene therapy (1, 2), while protein delivery is a promising means of affecting cellular function in both clinical (3) and laboratory (4) settings. Other materials, such as small molecules, quantum dots, or gold nanoparticles, are of interest for cancer therapies (5, 6), intracellular labeling (7,8), and single-molecule tracking (9).The cell membrane is largely impermeable to macromolecules. Many existing techniques use polymeric nanoparticles (10, 11), liposomes (12), or chemical modifications of the target molecule (13), such as cell-penetrating peptides (CPPs) (14, 15), to facilitate membrane poration or endocytotic delivery. In these methods, the delivery vehicle's efficacy is often dependent on the structure of the target molecule and the cell type. These methods are thus efficient in the delivery of structurally uniform materials, such as nucleic acids, but often ill-suited for the delivery of more structurally diverse materials, such as proteins (16,17) and some nanomaterials (7). Moreover, the endosome escape mechanism that most of these methods rely on is often inefficient; hence, much material remains trapped in endosomal and lysosomal vesicles (18). More effective gene delivery methods, such as viral vectors (19,20), however, often risk chromosomal integration and are limited to DNA and RNA delivery.Membrane poration methods, such as electroporation (21, 22) and sonoporation (23), are an attractive alternative in some applications. Indeed, electroporation has demonstrated its efficacy in a number of DNA (24) and ...
The prevalence of AGA in Korean men and women was lower than that in caucasians, as recorded in the literature. Korean men tend to have more frontal hairline preservation and show a more 'female pattern' of hair thinning than caucasians. Therefore, 'female pattern' should be added to the classification of AGA.
BackgroundAndrogenetic alopecia (AGA) is a common hair loss disease with genetic predisposition among men and women, and it may commence at any age after puberty. It may significantly affect a variety of psychological and social aspects of one's life and the individual's overall quality of life (QoL).ObjectiveThis study aimed to investigate the QoL of AGA patients and discover the factors that can influence the QoL of AGA patients, including previous experience in non-medical hair care, reasons for hospital visits, age, duration, and the severity of AGA.MethodsA total of 998 male patients with AGA were interviewed, using the Hair Specific Skindex-29 to evaluate the QoL of AGA patients.ResultsThe results of the Hair Specific Skindex-29 on patients with AGA were as follows: symptom scale: 26.3±19.5, function scale: 24.0±20.1, emotion scale: 32.1±21.8, and global score: 27.3±19.1. According to this assessment, QoL was more damaged if the patient had severe alopecia, a longer duration of AGA, younger age, had received previous non-medical hair care, and visited the hospital for AGA treatment.ConclusionThis study showed that AGA could harmfully affect the patients' QoL. These findings indicate that dermatologists should address these QoL issues when treating patients with alopecia.
Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.