Cyclopropylcarbinyl --> homoallyl and related rearrangements of radical ions (a) are frequently used as mechanistic "probes" to detect the occurrence of single electron transfer in chemical and biochemical processes, (b) provide the basis for mechanism-based drug design, and (c) are important tools in organic synthesis. Unfortunately, these rearrangements are poorly understood, especially with respect to the effect of substrate structure on reactivity. Frequently, researchers assume that the same factors which govern the reactivity of neutral free radicals also pertain to radical ions. The results reported herein demonstrate that in some cases structure-reactivity trends in radical ion rearrangements are very different from neutral radicals. For radical ions, delocalizations of both charge and spin are important factors governing their reactivity.
The reaction of NaC5H5 (NaCp) and hexafluorobenzene (1:1 ratio) in THF at 25 °C for 15 h afforded, after hydrolysis, a mixture of regioisomeric (pentafluorophenyl)cyclopentadienes. This mixture was isolated as a monoisomeric dimer of 1-(pentafluorophenyl)cyclopentadiene. The structure of the dimer was determined crystallographically. Flash vacuum thermolytic cracking of the dimer at 200 °C regenerated (pentafluorophenyl)cyclopentadiene as a mixture of regioisomers. In contrast, the reaction of NaCp, NaH, and C6F6 (1:2:5 ratio) in THF at reflux for 3 d affords, after hydrolysis, 1,4-bis(pentafluorophenyl)cyclopentadiene, which does not dimerize. Either the mono- or the disubsubstituted diene reacts with NaH in THF to afford the corresponding stable substituted sodium cyclopentadienides in high yields. Sodium (pentafluorophenyl)cyclopentadienide, (C6F5)C5H4Na, reacted with FeBr2, Re(CO)5Br, and ZrCl4(THF)2, to afford the transition metal complexes (η5-C5H4C6F5)2Fe, (η5-C5H4C6F5)Re(CO)3, and (η5-C5H4C6F5)2ZrCl2. Sodium 1,3-bis(pentafluorophenyl)cyclopentadienide reacted with FeBr2 and Re(CO)5Br to give the corresponding complexes [η5-1,3-C5H3(C6F5)2]2Fe and [η5-1,3-C5H3(C6F5)2]Re(CO)3. Infrared spectroscopic analysis of the tricarbonylrhenium(I) complexes and cyclic voltammetric analysis of the substituted ferrocenes quantified the strong electron-withdrawing effects of the pentafluorophenyl substituents.
Results pertaining to the electrochemical reduction of 1,2-diacetylcyclopropane (5), 1-acetyl-2-phenylcyclopropane (6), 1-acetyl-2-benzoylcyclopropane (7), and 1,2-dibenzoylcyclopropane (8) are reported. While 6*- exists as a discrete species, the barrier to ring opening is very small (<1 kcal/mol) and the rate constant for ring opening is >10(7) s(-1). For 7 and 8, the additional resonance stabilization afforded by the benzoyl moieties results in significantly lower rate constants for ring opening, on the order of 10(5)-10(6) s(-1). Electron transfer to 8 serves to initiate an unexpected vinylcyclopropane --> cyclopentene type rearrangement, which occurs via a radical ion chain mechanism. The results for reduction of 5 are less clear-cut: The experimental results suggest that the reduction is unexceptional, with a symmetry coefficient alpha = 0.5, and reorganization energy consistent with a simple electron-transfer process (one electron reduction, followed by ring opening). In contrast, molecular orbital calculations suggest that 5*- has no apparent lifetime and that reduction of 5 may occur by a concerted dissociative electron transfer (DET) mechanism (i.e., electron transfer and ring opening occur simultaneously). These seemingly contradictory results can be reconciled if the increase in the internal reorganization energy associated with the onset of concerted DET is offset by a lowering of the solvent reorganization energy associated with electron transfer to a more highly delocalized LUMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.