The genus Fritillaria belongs to the widely distributed Liliaceae. The bulbs of Fritillaria, F. ussuriensis and F. cirrhosa are valuable herbaceous medicinal ingredients. However, they are still used indiscriminately in herbal medicine. Identification and molecular phylogenic analysis of Fritillaria species are therefore required. Here, we report the complete chloroplast (CP) genome sequences of F. ussuriensis and F. cirrhosa. The two Fritillaria CP genomes were 151,524 and 151,083 bp in length, respectively, and each included a pair of inverted repeated regions (52,678 and 52,156 bp) that was separated by a large single copy region (81,732 and 81,390 bp), and a small single copy region (17,114 and 17,537 bp). A total of 111 genes in F. ussuriensis and 112 in F. cirrhosa comprised 77 protein-coding regions in F. ussuriensis and 78 in F. cirrhosa, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. The gene order, content, and orientation of the two Fritillaria CP genomes exhibited the general structure of flowering plants, and were similar to those of other Fritillaria species. Comparison of the six Fritillaria species’ CP genomes indicated seven highly divergent regions in intergenic spacers and in the matK, rpoC1, rpoC2, ycf1, ycf2, ndhD, and ndhF coding regions. We established the position of the six species through phylogenic analysis. The complete chloroplast genome sequences of the two Fritillaria species and a comparison study are useful genomic information for identifying and for studying the phylogenetic relationship among Fritillaria species within the Liliaceae.
Accurate identification of the plant species that are present in herbal medicines is important for quality control. Although the dried roots of Aralia continentalis (Araliae Continentalis Radix) and Angelica biserrata (Angelicae Pubescentis Radix) are used in the same traditional medicine, namely Dok-Hwal in Korean and Du-Huo in Chinese, the medicines are described differently in the national pharmacopeia. Further confusion arises from the distribution of dried Levisticum officinale and Heracleum moellendorffii roots as the same medicine. Medicinal ingredients from all four plants are morphologically similar, and discrimination is difficult using conventional methods. Molecular identification methods offer rapidity and accuracy. The internal transcribed spacer 2 (ITS2) region of the nuclear ribosomal RNA gene (rDNA) was sequenced in all four plant species, and the sequences were used to design species-specific primers. Primers for each species were then combined to allow sample analysis in a single PCR reaction. Commercial herbal medicine samples were obtained from Korea and China and analyzed using the multiplex assay. The assay successfully identified authentic medicines and also identified inauthentic or adulterated samples. The multiplex assay will be a useful tool for identification of authentic Araliae Continentalis Radix and/or Angelicae Pubescentis Radix preparations in Korea and China.
Prunus africana is an endangered medicinal plant and hence new propagation methods are urgently required to increase its populations. Unfortunately, propagation through seeds is challenging due to its long flowering cycle and recalcitrant seeds. We developed a protocol for micropropagation using nodal segment explants. A woody plant medium supplemented with vitamins, 15 g L−1 sucrose, and 1.0 mg L−1 6-benzylaminopurine (BAP) supported the optimum rate (100%) of axillary shoot initiation. Supplementation with 15 g L−1 sucrose and 1.5 mg L−1 indole-3-acetic acid (IAA) provided the optimum rate (75%) of root initiation. Rooted plantlets were successfully planted in sterilized horticultural soil containing perlite (2:1 v/v) and the survival rate was 98% following acclimatization. The photosynthetic rate assessed using FlourPen FP110 series showed that the ratio of variable fluorescence to maximum fluorescence mean value for in vitro regenerated P. africana (0.830 ± 0.0008) was similar to that of the maternal P. africana plant (0.825 ± 0.005), indicating similarity in their photosynthetic performance; a pivotal process for growth and development. The Fourier transform near-IR (FT-NIR) spectrometer analysis of the in vitro regenerated and the maternal P. africana plant samples exhibited homogeneity in the absorbance peaks at 8,273, 6,344, and 4,938–4,500 cm−1 associated with lipids, starch, and proteins. The genetic fidelity of regenerated plants was confirmed using the randomly amplified polymorphic DNA (RAPD) technique. Our protocol is suitable for use in large-scale P. africana to meet the increasing demands for it in the global market.
This study aimed to investigate whether the Protaetia brevitarsis seulensis (PB)’ water extract (PBWE) ameliorates trimethyltin (TMT)-induced seizures and hippocampal neurodegeneration. To investigate the potential neuroprotective effect of the PBWE in vitro, a lactate dehydrogenase (LDH) assay was conducted in TMT-treated primary cultures of mouse hippocampal neurons. In TMT-treated adult C57BL/6 mice, behavioral and histopathological changes were evaluated by seizure scoring and Fluoro-Jade C staining, respectively. In our in vitro assay, we observed that pretreating mice hippocampal neuron cultures with the PBWE reduced TMT-induced cytotoxicity, as indicated by the decreased LDH release. Furthermore, pretreatment with the PBWE alleviated seizures and hippocampal neurodegeneration in TMT-treated mice. The antioxidant activity of the PBWE increased in a dose-dependent manner; moreover, pretreatment with the PBWE mitigated the TMT-induced Nrf2 stimulation. In addition, six major compounds, including adenine, hypoxanthine, uridine, adenosine, inosine, and benzoic acid, were isolated from the PBWE, and among them, inosine and benzoic acid have been confirmed to have an essential antioxidative activity. In conclusion, the PBWE ameliorated TMT-induced toxicity in hippocampal neurons in both in vitro and in vivo assays, through a potential antioxidative effect. Our findings suggest that the PBWE may have pharmacotherapeutic potential in neurodegenerative diseases such as seizures or epilepsy.
Aconitum pseudolaeve Nakai and Aconitum longecassidatum Nakai, which belong to the Aconitum subgenus Lycoctonum, are distributed in East Asia and Korea. Aconitum species are used in herbal medicine and contain highly toxic components, including aconitine. A. pseudolaeve, an endemic species of Korea, is a commercially valuable material that has been used in the manufacture of cosmetics and perfumes. Although Aconitum species are important plant resources, they have not been extensively studied, and genomic information is limited. Within the subgenus Lycoctonum, which includes A. pseudolaeve and A. longecassidatum, a complete chloroplast (CP) genome is available for only one species, Aconitum barbatum Patrin ex Pers. Therefore, we sequenced the complete CP genomes of two Aconitum species, A. pseudolaeve and A. longecassidatum, which are 155,628 and 155,524 bp in length, respectively. Both genomes have a quadripartite structure consisting of a pair of inverted repeated regions (51,854 and 52,108 bp, respectively) separated by large single-copy (86,683 and 86,466 bp) and small single-copy (17,091 and 16,950 bp) regions similar to those in other Aconitum CP genomes. Both CP genomes consist of 112 unique genes, 78 protein-coding genes, 4 ribosomal RNA (rRNA) genes, and 30 transfer RNA (tRNA) genes. We identified 268 and 277 simple sequence repeats (SSRs) in A. pseudolaeve and A. longecassidatum, respectively. We also identified potential 36 species-specific SSRs, 53 indels, and 62 single-nucleotide polymorphisms (SNPs) between the two CP genomes. Furthermore, a comparison of the three Aconitum CP genomes from the subgenus Lycoctonum revealed highly divergent regions, including trnK-trnQ, ycf1-ndhF, and ycf4-cemA. Based on this finding, we developed indel markers using indel sequences in trnK-trnQ and ycf1-ndhF. A. pseudolaeve, A. longecassidatum, and A. barbatum could be clearly distinguished using the novel indel markers AcoTT (Aconitum trnK-trnQ) and AcoYN (Aconitum ycf1-ndhF). These two new complete CP genomes provide useful genomic information for species identification and evolutionary studies of the Aconitum subgenus Lycoctonum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.