Since the AKT/mammalian target of rapamycin (mTOR)/c-Myc signaling plays a pivotal role in the modulation of aerobic glycolysis and tumor growth, in the present study, the role of AKT/mTOR/c-Myc signaling in the apoptotic effect of Compound K (CK), an active ginseng saponin metabolite, was explored in HepG2 and Huh7 human hepatocellular carcinoma cells (HCCs). Here, CK exerted significant cytotoxicity, increased sub-G1, and attenuated the expression of pro-Poly (ADPribose) polymerase (pro-PARP) and Pro-cysteine aspartyl-specific protease (pro-caspase3) in HepG2 and Huh7 cells. Consistently, CK suppressed AKT/mTOR/ c-Myc and their downstreams such as Hexokinase 2 (HK2) and pyruvate kinase isozymes M2 (PKM2) in HepG2 and Huh7 cells. Additionally, CK reduced c-Myc stability in the presence or absence of cycloheximide in HepG2 cells. Furthermore, AKT inhibitor LY294002 blocked the expression of p-AKT, c-Myc, HK2, PKM2, and pro-cas3 in HepG2 cells. Pyruvate blocked the ability of CK to inhibit p-AKT, p-mTOR, HK2, and pro-Cas3 in treated HepG2 cells. Overall, these findings provide evidence that CK induces apoptosis via inhibition of glycolysis and AKT/mTOR/c-Myc signaling in HCC cells as a potent anticancer candidate for liver cancer clinical translation.
Though Morusin isolated from the root of Morus alba was known to have antioxidant, anti-inflammatory, antiangiogenic, antimigratory, and apoptotic effects, the underlying antitumor effect of Morusin is not fully understood on the glycolysis of liver cancers. Hence, in the current study, the antitumor mechanism of Morusin was explored in Hep3B and Huh7 hepatocellular carcninomas (HCC) in association with glycolysis and G1 arrest. Herein, Morusin significantly reduced the viability and the number of colonies in Hep3B and Huh7 cells. Moreover, Morusin significantly increased G1 arrest, attenuated the expression of cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) and upregulated p21 and p27 in Hep3B and Huh7 cells. Interestingly, Morusin significantly activated phosphorylation of the adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) but attenuated the expression of the p-mammalian target of protein kinase B (AKT), rapamycin (mTOR), c-Myc, hexokinase 2(HK2), pyruvate kinases type M2 (PKM2), and lactate dehydrogenase (LDH) in Hep3B and Huh7 cells. Consistently, Morusin suppressed lactate, glucose, and adenosine triphosphate (ATP) in Hep3B and Huh7 cells. Conversely, the AMPK inhibitor compound C reduced the ability of Morusin to activate AMPK and attenuate the expression of p-mTOR, HK2, PKM2, and LDH-A and suppressed G1 arrest induced by Morusin in Hep3B cells. Overall, these findings suggest that Morusin exerts an antitumor effect in HCCs via AMPK mediated G1 arrest and antiglycolysis as a potent dietary anticancer candidate.
Though Atorvastatin has been used as a hypolipidemic agent, its anticancer mechanisms for repurposing are not fully understood so far. Thus, in the current study, its apoptotic and autophagic mechanisms were investigated in non-small cell lung cancers (NSCLCs). Atorvastatin increased cytotoxicity, sub G1 population, the number of apoptotic bodies, cleaved poly (ADP-ribose) polymerase (PARP) and caspase 3 and activated p53 in H1299, H596, and H460 cells. Notably, Atorvastatin inhibited the expression of c-Myc and induced ribosomal protein L5 and L11, but depletion of L5 reduced PARP cleavages induced by Atorvastatin rather than L11 in H1299 cells. Also, Atorvastatin increased autophagy microtubule-associated protein 1A/1B-light chain 3II (LC3 II) conversion, p62/sequestosome 1 (SQSTM1) accumulation with increased number of LC3II puncta in H1299 cells. However, late stage autophagy inhibitor chloroquine (CQ) increased cytotoxicity in Atorvastatin treated H1299 cells compared to early stage autophagy inhibitor 3-methyladenine (3-MA). Furthermore, autophagic flux assay using RFP-GFP-LC3 constructs and Lysotracker Red or acridine orange-staining demonstrated that autophagosome-lysosome fusion is blocked by Atorvastatin treatment in H1299 cells. Conversely, overexpression of CCR4-NOT transcription complex subunit 2(CNOT2) weakly reversed the ability of Atorvastatin to increase cytotoxicity, sub G1 population, cleavages of PARP and caspase 3, LC3II conversion and p62/SQSTM1 accumulation in H1299 cells. In contrast, CNOT2 depletion enhanced cleavages of PARP and caspase 3, LC3 conversion and p62/SQSTM1 accumulation in Atorvastatin treated H1299 cells. Overall, these findings suggest that CNOT2 signaling is critically involved in Atorvastatin induced apoptotic and autophagic cell death in NSCLCs.
Though Sanggenon G (SanG) from root bark of Morus alba was known to exhibit anti‐oxidant and anti‐depressant effects, its underlying mechanisms still remain unclear. Herein SanG reduced the viability of A549 and H1299 non‐small lung cancer cells (NSCLCs). Also, SanG increased sub‐G1 population via inhibition of cyclin D1, cyclin E, CDK2, CDK4 and Bcl‐2, cleavages of poly (ADP‐ribose) polymerase (PARP) and caspase‐3 in A549 and H1299 cells. Of note, SanG effectively inhibited c‐Myc expression by activating ribosomal protein L5 (RPL5) and reducing c‐Myc stability even in the presence of cycloheximide and 20% serum in A549 cells. Furthermore, SanG enhanced the apoptotic effect with doxorubicin in A549 cells. Taken together, our results for the first time provide novel evidence that SanG suppresses proliferation and induces apoptosis via caspase‐3 activation and RPL5 mediated inhibition of c‐Myc with combinational potential with doxorubicin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.