Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3 targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history, dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
Though melatonin is known to improve ultraviolet B (UVB)-induced oxidative damage and inflammatory conditions via the blockade of the nuclear factor (NF)-κB, interleukin (IL)-6, there is no report on the anti-wrinkle effect of melatonin to date. Hence in the present study, the anti-wrinkle mechanism of melatonin was elucidated in UVB treated HaCaT keratinocytes and hairless mice. Herein melatonin protected against a radical initiator tert-Butyl hydroperoxide (t-BOOH) induced reactive oxygen species (ROS) production, matrix metalloprotease 1 (MMP-1), pro-collagen and cytotoxicity in HaCaT keratinocytes. Additionally, melatonin suppressed the expression of sonic hedgehog (SHH) and GLI1 for hedgehog signaling and p-NF-κB, cyclooxygenase (COX-2), phospho-extracellular signal-regulated kinase-1 (p-ERK) for inflammatory responses in UVB treated HaCaT keratinocytes. Furthermore, melatonin protected skin from wrinkle formation, transdermal water loss in hairless mice irradiated by UVB for 8 weeks. Notably, melatonin prevented against epidermal thickness and dermal collagen degradation in UVB irradiated hairless mice by Hematoxylin and Eosin and Masson’s trichrome staining. Taken together, these findings suggest that melatonin reduces wrinkle formation via inhibition of ROS/SHH and inflammatory proteins such as NF-κB/COX-2/ERK/MMP1.
Lambertianic acid (LA) is a biologically active compound from the leaves of Pinus koraiensis. In the present study, apoptotic mechanisms of LA plus TNF-related apoptosis-inducing ligand (TRAIL) were elucidated in non-small cell lung cancer cells (NSCLCs). Cytotoxicity assay, flow cytometry, immunoprecipitation, and Western blotting were performed. Here, combined treatment of LA and TRAIL increased cytotoxicity, sub-G1 population, cleaved poly (ADP-ribose) polymerase (PARP), and caspase3/8/9 in A549 and H1299 cells compared to LA or TRAIL alone. Furthermore, combined treatment of LA and TRAIL significantly decreased antiapoptotic proteins such as B-cell lymphoma 2 (Bcl-2), Fas-like inhibitor protein (FLIP), and X-linked inhibitor of apoptosis protein (XIAP), and enhanced the activation of proapoptotic proteins Bid compared to LA or TRAIL alone. In addition, combined treatment of LA and TRAIL upregulated the expression of Death receptor 4 (DR4) and downregulated phosphorylation of nuclear factor κ-light-chain-enhancer of activated B cells (p-NF-κB), inhibitory protein of kB family (p-IκB), and FLIP in A549 and H1299 cells along with disrupted binding of XIAP with caspase3 or NF-κB. Overall, these findings suggest that lambertianic acid enhances TRAIL-induced apoptosis via inhibition of XIAP/NF-κB in TRAIL resistant NSCLCs.
Though Atorvastatin has been used as a hypolipidemic agent, its anticancer mechanisms for repurposing are not fully understood so far. Thus, in the current study, its apoptotic and autophagic mechanisms were investigated in non-small cell lung cancers (NSCLCs). Atorvastatin increased cytotoxicity, sub G1 population, the number of apoptotic bodies, cleaved poly (ADP-ribose) polymerase (PARP) and caspase 3 and activated p53 in H1299, H596, and H460 cells. Notably, Atorvastatin inhibited the expression of c-Myc and induced ribosomal protein L5 and L11, but depletion of L5 reduced PARP cleavages induced by Atorvastatin rather than L11 in H1299 cells. Also, Atorvastatin increased autophagy microtubule-associated protein 1A/1B-light chain 3II (LC3 II) conversion, p62/sequestosome 1 (SQSTM1) accumulation with increased number of LC3II puncta in H1299 cells. However, late stage autophagy inhibitor chloroquine (CQ) increased cytotoxicity in Atorvastatin treated H1299 cells compared to early stage autophagy inhibitor 3-methyladenine (3-MA). Furthermore, autophagic flux assay using RFP-GFP-LC3 constructs and Lysotracker Red or acridine orange-staining demonstrated that autophagosome-lysosome fusion is blocked by Atorvastatin treatment in H1299 cells. Conversely, overexpression of CCR4-NOT transcription complex subunit 2(CNOT2) weakly reversed the ability of Atorvastatin to increase cytotoxicity, sub G1 population, cleavages of PARP and caspase 3, LC3II conversion and p62/SQSTM1 accumulation in H1299 cells. In contrast, CNOT2 depletion enhanced cleavages of PARP and caspase 3, LC3 conversion and p62/SQSTM1 accumulation in Atorvastatin treated H1299 cells. Overall, these findings suggest that CNOT2 signaling is critically involved in Atorvastatin induced apoptotic and autophagic cell death in NSCLCs.
Although Moracin D derived from Morus alba was known to have anti-inflammatory and antioxidant activities, the underlying antitumor mechanism of Moracin D has not been unveiled thus far. Thus, in the recent study, the apoptotic mechanism of Moracin D was elucidated in breast cancer cells. Herein, Moracin D exerted significant cytotoxicity in MDA-MB-231 and MCF-7 cells. Furthermore, Moracin D increased sub G1 population; cleaved poly (Adenosine diphosphate (ADP-ribose)) polymerase (PARP); activated cysteine aspartyl-specific protease 3 (caspase 3); and attenuated the expression of c-Myc, cyclin D1, B-cell lymphoma 2 (Bcl-2), and X-linked inhibitor of apoptosis protein (XIAP) in MDA-MB231 cells. Of note, Moracin D reduced expression of Forkhead box M1 (FOXM1), β-catenin, Wnt3a, and upregulated glycogen synthase kinase 3 beta (GSK3β) on Tyr216 along with disturbed binding of FOXM1 with β-catenin in MDA-MB-231 cells. Conversely, GSK3β inhibitor SB216763 reversed the apoptotic ability of Moracin D to reduce expression of FOXM1, β-catenin, pro-caspase3, and pro-PARP in MDA-MB-231 cells. Overall, these findings provide novel insight that Moracin D inhibits proliferation and induces apoptosis via suppression of Wnt3a/FOXM1/β-catenin signaling and activation of caspases and GSK3β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.