Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality.
The process of learning a human’s movement and motor control mechanisms by watching and mimicking human motions was based on visuo-motor control in three dimensional space. However, previous studies regarding the visuo-motor control in three dimensional space have focused on analyzing the tracking tasks along one-dimensional lines or two-dimensional planes using single or multi-joint movements. Therefore, in this study, we developed a new system to quantitatively evaluate visuo-motor control in three-dimensional space based on virtual reality (VR) environment. Our proposed system is designed to analyze circular tracking movements on frontal and sagittal planes in VR space with millimeter level accuracy. In particular, we compared the circular tracking movements under monocular and binocular vision conditions. The results showed that the accuracy of circular tracking movements drops approximately 4.5 times in monocular vision than that in binocular vision on both frontal and sagittal planes. We also found that significant difference can be observed between frontal and sagittal planes for only the accuracy of X-axis in both monocular and binocular visions.
Motor control characteristics of the human visuomotor control system need to be analyzed in the three-dimensional (3D) space to study and imitate human movements. In this paper, we examined circular tracking movements on two planes in 3D space from a motor control perspective based on three temporospatial parameters in polar coordinates. Sixteen healthy human subjects participated in this study and performed circular target tracking movements rotating at 0.125, 0.25, 0.5, and 0.75 Hz in the frontal or sagittal planes in three-dimensional space. The results showed that two temporal parameter errors on each plane were proportional to the change in the target velocity. Furthermore, frontal plane circular tracking errors without depth for a spatial parameter were lower than those for sagittal plane circular tracking with depth. The experimental protocol and data analysis allowed us to analyze the motor control characteristics temporospatially for circular tracking movement with various depths and speeds in the 3D VR space.
Analysis of visually guided tracking movements is an important component of understanding human visuomotor control system. The aim of our study was to investigate the effects of different target speeds and different circular tracking planes, which provide different visual feedback of depth information, on temporal and spatial tracking accuracy. In this study, we analyze motor control characteristic of circular tracking movements during monocular vision in three-dimensional space using a virtual reality system. Three parameters in polar coordinates were analyzed: ΔR, the difference in the distance from the fixed pole; Δθ, the difference in the position angle; and Δω, the difference in the angular velocity. We compare the accuracy of visually guided circular tracking movements during monocular vision in two conditions: (1) movement in the frontal plane relative to the subject that requires less depth information and (2) movement in the sagittal plane relative to the subject that requires more depth information. We also examine differences in motor control at four different target speeds. The results show that depth information affects both spatial and temporal accuracy of circular tracking movement, whereas target speed only affects temporal accuracy of circular tracking movement. This suggests that different strategies of feedforward and feedback controls are performed in the tracking of movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.