High-mobility group box protein-1 (HMGB-1) plays a central role in the inflammatory network, and uncontrolled chronic inflammation can lead to excessive scarring. The aim of this study was to evaluate the anti-inflammatory effects of polydeoxyribonucleotide (PDRN) on scar formation. Sprague-Dawley rats (n = 30) underwent dorsal excision of the skin, followed by skin repair. PDRN (8 mg/kg) was administered via intraperitoneal injection for three (PDRN-3 group, n = 8) or seven (PDRN-7 group, n = 8) days, and HMGB-1 was administered via intradermal injection in addition to PDRN treatment for three days (PDRN-3+HMGB-1 group; n = 6). The scar-reducing effects of PDRN were evaluated in the internal scar area and by inflammatory cell counts using histology and immunohistochemistry. Western blot, immunohistochemistry and immunofluorescence assays were performed to observe changes in type I and type III collagen and the expression of HMGB-1 and CD45. Treatment with PDRN significantly reduced the scar area, inflammatory cell infiltration and the number of CD45-positive cells. In addition, the increased expression of HMGB-1 observed in the sham group was significantly reduced after treatment with PDRN. Rats administered HMGB-1 in addition to PDRN exhibited scar areas with inflammatory cell infiltration similar to the sham group, and the collagen synthesis effects of PDRN were reversed. In summary, PDRN exerts anti-inflammatory and collagen synthesis effects via HMGB-1 suppression, preventing scar formation. Thus, we believe that the anti-inflammatory and collagen synthesis effects of PDRN resulted in faster wound healing and decreased scar formation.
BackgroundPolydeoxyribonucleotide (PDRN) is known to have anti-inflammatory and angiogenic effects and to accelerate wound healing. The aim of this study was to investigate whether PDRN could improve peripheral tissue oxygenation and angiogenesis in diabetic foot ulcers.MethodsThis was a prospective randomized controlled clinical trial. Twenty patients with a non-healing diabetic foot ulcer were randomly distributed into a control group (n=10) and a PDRN group (n=10). Initial surgical debridement and secondary surgical procedures such as a split-thickness skin graft, primary closure, or local flap were performed. Between the initial surgical debridement and secondary surgical procedures, 0.9% normal saline (3 mL) or PDRN was injected for 2 weeks by the intramuscular (1 ampule, 3 mL, 5.625 mg, 5 days per week) and perilesional routes (1 ampule, 3 mL, 5.625 mg, 2 days per week). Transcutaneous oxygen tension (TcPO2) was evaluated using the Periflux System 5000 with TcPO2/CO2 unit 5040 before the injections and on days 1, 3, 7, 14, and 28 after the start of the injections. A pathologic review (hematoxylin and eosin stain) of the debrided specimens was conducted by a pathologist, and vessel density (average number of vessels per visual field) was calculated.ResultsCompared with the control group, the PDRN-treated group showed improvements in peripheral tissue oxygenation on day 7 (P<0.01), day 14 (P<0.001), and day 28 (P<0.001). The pathologic review of the specimens from the PDRN group showed increased angiogenesis and improved inflammation compared with the control group. No statistically significant difference was found between the control group and the PDRN group in terms of vessel density (P=0.094). Complete healing was achieved in every patient.ConclusionsIn this study, PDRN improved peripheral tissue oxygenation. Moreover, PDRN is thought to be effective in improving inflammation and angiogenesis in diabetic foot ulcers.
Background:
The authors hypothesize that ischemic preconditioning of the recipient site with deferoxamine will increase fat graft survival by enhancing angiogenesis in a rat model.
Methods:
Cell viability, tube formation, and mRNA expression were measured in human umbilical vein endothelial cells treated with deferoxamine. A total of 36 rats were then used for an in vivo study. A dose of 100 mg/kg of deferoxamine was injected subcutaneously into the rat scalp every other day for five treatments. On the day after the final injection, the scalp skin was harvested from half the animals to evaluate the effects of deferoxamine on the recipient site. In the remaining animals, inguinal fat tissue was transplanted to the scalp. Eight weeks after transplantation, the grafts were harvested to evaluate the effects of deferoxamine preconditioning on fat graft survival.
Results:
In human umbilical vein endothelial cells, treatment with a deferoxamine concentration higher than 400 μM decreased cell viability compared with the control (p = 0.002). Treatment with 100 and 200 μM deferoxamine increased endothelial tube formation (p = 0.001) and mRNA levels of angiogenesis-related factors (p = 0.02). Rat scalps treated with deferoxamine exhibited increased capillary neoformation (p = 0.001) and vascular endothelial growth factor protein expression (p = 0.024) compared with controls. Fat graft volume retention, capillary density (p < 0.001), and adipocyte viability (p < 0.001) in the grafted fat increased when the recipient site was preconditioned with deferoxamine.
Conclusion:
This study demonstrated that recipient site preconditioning with deferoxamine increases fat graft survival by inducing vascular endothelial growth factor and neovascularization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.