Realizing highly immersive tactile interactions requires a skin-integrated, untethered, high-definition tactile transducer devices that can record and generate tactile stimuli. However, the rigid and bulky form factor, and insufficient resolution of existing actuators are hindering the reproduction of sophisticated tactile sensations and immersive user experiences. Here, we demonstrate an ultra-flexible tactile interface with high spatial resolution of 1.8 mm for telehaptic communication on human skin. Dual mechanism sensors and sub-mm scale piezoceramic actuators are designed to record and generate the static and dynamic pressures in a wide frequency range (1 Hz to 1 kHz). Moreover, actuators are integrated on ultra-flexible substrate with chessboard pattern to minimize stress during mechanical deformations. Finally, remote transmissions of various tactile stimuli, such as shapes, textures, and vibration patterns were demonstrated by the telehaptic system with low latency (<1.55 ms) and high fidelity as proven by the short-time Fourier-transform analysis.
To accurately probe the tactile information on soft skin, it is critical for the pressure sensing array to be free of noise and inter-taxel crosstalk, irrespective of the measurement condition. However, on dynamically moving and soft surfaces, which are common conditions for on-skin and robotic applications, obtaining precise measurement without compromising the sensing performance is a significant challenge due to mechanical coupling between the sensors and with the moving surface. In this work, multi-level architectural design of micro-pyramids and trapezoid-shaped mechanical barrier array was implemented to enable accurate spatiotemporal tactile sensing on soft surfaces under dynamic deformations. Trade-off relationship between limit of detection and bending insensitivity was discovered, which was overcome by employing micropores in barrier structures. Finally, in-situ pressure mapping on dynamically moving soft surfaces without signal distortion is demonstrated while human skin and/or soft robots are performing complicated tasks such as reading Braille and handling the artificial organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.