Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics. First, since e‐skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self‐healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large‐area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.
An ultrahigh sensitive capacitive pressure sensor based on a porous pyramid dielectric layer (PPDL) is reported. Compared to that of the conventional pyramid dielectric layer, the sensitivity was drastically increased to 44.5 kPa −1 in the pressure range <100 Pa, an unprecedented sensitivity for capacitive pressure sensors. The enhanced sensitivity is attributed to a lower compressive modulus and larger change in an effective dielectric constant under pressure. By placing the pressure sensors on islands of hard elastomer embedded in a soft elastomer substrate, the sensors exhibited insensitivity to strain. The pressure sensors were also nonresponsive to temperature. Finally, a contact resistance-based pressure sensor is also demonstrated by chemically grafting PPDL with a conductive polymer, which also showed drastically enhanced sensitivity.
Tactile sensors that can mechanically decouple, and therefore differentiate, various tactile inputs are highly important to properly mimic the sensing capabilities of human skin. Herein, we present an all-solution processable pressure insensitive strain sensor that utilizes the difference in structural change upon the application of pressure and tensile strain. Under the application of strain, microcracks occur within the multiwalled carbon nanotube (MWCNT) network, inducing a large change in resistance with gauge factor of ∼56 at 70% strain. On the other hand, under the application of pressure to as high as 140 kPa, negligible change in resistance is observed, which can be attributed to the pressure working primarily to close the pores, and hence minimally changing the MWCNT network conformation. Our sensor can easily be coated onto irregularly shaped three-dimensional objects (e.g., robotic hand) via spray coating, or be attached to human joints, to detect bending motion. Furthermore, our sensor can differentiate between shear stress and normal pressure, and the local strain can be spatially mapped without the use of patterned electrode array using electrical impedance tomography. These demonstrations make our sensor highly useful and important for the future development of high performance tactile sensors.
Patient-friendly
medical diagnostics and treatments have been receiving
a great deal of interest due to their rapid and cost-effective health
care applications with minimized risk of infection, which has the
potential to replace conventional hospital-based medical procedures.
In particular, the integration of recently developed materials into
health care devices allows the rapid development of point-of-care
(POC) sensing platforms and implantable devices with special functionalities.
In this review, the recent advances in biosensors for patient-friendly
diagnosis and implantable devices for patient-friendly treatment are
discussed. Comprehensive analysis of portable and wearable biosensing
platforms for patient-friendly health monitoring and disease diagnosis
is provided, including topics such as materials selection, device
structure and integration, and biomarker detection strategies. Moreover,
specific challenges related to each biological fluid for wearable
biosensor-based POC applications are presented. Also, advances in
implantable devices, including recent materials development and wireless
communication strategies, are discussed. Furthermore, various patient-friendly
surgical and treatment approaches are reviewed, such as minimally
invasive insertion and mounting, in vivo electrical
and optical modulations, and post-operation health monitoring. Finally,
the challenges and future perspectives toward the development of the
patient-friendly diagnosis and treatment are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.