Considering the future development in vehicle platooning technology and the multiple models pertaining to complex road environments involving freight cars and general vehicles, the speed and distance of a vehicle model were set as variables in this study. This study aimed at analyzing the effect of currents acting differently using SolidWorks Flow Simulation tool for the vehicle platooning between different models of trucks that are currently being studied actively and sports utility vehicle (SUV) whose market share has been increasing, in order to evaluate the changes in the drag coefficient and their causes. Additionally, purpose-based vehicle (PBV) presented by Hyundai Motor (Ulsan, Korea) during the CES 2020 was considered. In this study, we found that the shape of the rear side of the leading vehicle reduces the drag coefficient of the following vehicle by washing the wake, similar to a spoiler at the rear. The rear side area of the leading vehicle forms a wide range of low pressures, which increases the drag coefficient effect of the following vehicle. The overall height of the leading vehicle also generates a distribution of low pressures above the rear of the vehicle. This reduces the impact of low pressures on the overall height of the following vehicle. The shape of the front of the following vehicle enables the wake of the leading vehicle, which involves low pressures, to inhibit the Bernoulli effect of the following vehicle. Furthermore, the front of the following vehicle continues to be affected by the wake of the leading vehicle, resulting in an increase in the drag coefficient reduction.
Extending the maximum driving distance of an electric vehicle would be beneficial given these vehicles’ long charging time and limited battery capacity and to improve electricity consumption. Research on the optimal development of the powertrain is essential because the efficiency of an electric motor varies according to the operating point. In this study, we developed a simulation analysis model with a continuously variable transmission. based on the commercial electric vehicle (Company B) model and using actual vehicle driving data supplied by the Argonne National Laboratory. The shift pattern of the continuously variable transmission was then optimized by considering the change in the operating point, constant motor output area, and transmission response speed. In addition, a performance comparison was made using the model with a single reducer. The results obtained by this study showed that electronic economy improved by approximately 5% when the continuously variable transmission was applied through the combined driving simulation. Furthermore, the time taken to accelerate 0–100 km/h and 80–120 km/h reduced by 15% and 6%, respectively. The maximum driving distance on a single charge improved by 7 km. It was confirmed that the driving performance of an EV with continuously variable transmission could be improved by downsizing the electric motor to reduce manufacturing costs.
In this study, aeroacoustic characteristics of combined fan are investigated and noise was reduced by applying Serrated Trailing Edge which is known as the method to reduce fan noises. Unsteady CFD (Computational Fluid Dynamics) analysis was carried out using Lattice Boltzmann Method(LBM) to figure out the combined fan's aeroacoustics and experimental results was used to verify simulation results. Results show that different BPFs are generated at the each inner fan and outer fan on the different frequency while Blade Passing Frequency(BPF) of general fans is constant on the entire frequency range. Boundary vortex and vortex shedding are suppressed or dispersed by applying the Serrated Trailing Edge to the inner fan. Furthermore, broadband noise and fan's torque are reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.