We control the quantum mechanical motion of neutral atoms in an optical lattice by driving microwave transitions between spin states whose trapping potentials are spatially offset. Control of this offset with nanometer precision allows for adjustment of the coupling strength between different motional states, analogous to an adjustable effective Lamb-Dicke factor. This is used both for efficient one-dimensional sideband cooling of individual atoms to a vibrational ground state population of 97% and to drive coherent Rabi oscillation between arbitrary pairs of vibrational states. We further show that microwaves can drive well resolved transitions between motional states in maximally offset, shallow lattices, and thus in principle allow for coherent control of long-range quantum transport.
We demonstrate accurate single-qubit control in an ensemble of atomic qubits trapped in an optical lattice. The qubits are driven with microwave radiation, and their dynamics tracked by optical probe polarimetry. Real-time diagnostics is crucial to minimize systematic errors and optimize the performance of single-qubit gates, leading to fidelities of 0.99 for single-qubit π rotations. We show that increased robustness to large, deliberately introduced errors can be achieved through the use of composite rotations. However, during normal operation the combination of very small intrinsic errors and additional decoherence during the longer pulse sequences precludes any significant performance gain in our current experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.