This work aimed to theoretically determine the high-energy-photon-shielding properties of flexible wood/natural rubber (NR) and NR composites containing photon protective fillers, namely Pb, Bi2O3, or Bi2S3, using XCOM. The properties investigated were the mass attenuation coefficient (µm), linear attenuation coefficient (µ), and half value layer (HVL) of the composites, determined at varying photon energies of 0.001–5 MeV and varying filler contents of 0–1,000 parts per hundred parts of rubber by weight (phr). The simulated results, which were in good agreement with previously reported experimental values (average difference was 5.3%), indicated that overall shielding properties increased with increasing filler contents but decreased with increasing incident photon energies. The results implied the potential of bismuth compounds, especially Bi2O3, to replace effective but highly toxic Pb as a safer high-energy-photon protective filler, evidenced by just a slight reduction in µm values compared with Pb fillers at the same filler content and photon energy. Furthermore, the results suggested that the addition of 20 phr wood particles, primarily aimed to enhance the rigidity and dimensional stability of Pb/NR, Bi2O3/NR, and Bi2S3/NR composites, did not greatly reduce shielding abilities; hence, they could be used as dimensional reinforcers for NR composites. Lastly, this work also reported the optimum Pb, Bi2O3, or Bi2S3 contents in NR and wood/NR composites at photon energies of 0.1, 0.5, 1, and 5 MeV, with 316–624 phr of filler being the recommended contents, of which the values depended on filler type and photon energy of interest.
This work theoretically determined the high-energy photon shielding properties of high-density polyethylene (HDPE) composites containing rare-earth oxides, namely samarium oxide (Sm2O3), europium oxide (Eu2O3), and gadolinium oxide (Gd2O3), for potential use as lead-free X-ray-shielding and gamma-shielding materials using the XCOM software package. The considered properties were the mass attenuation coefficient (µm), linear attenuation coefficient (µ), half value layer (HVL), and lead equivalence (Pbeq) that were investigated at varying photon energies (0.001–5 MeV) and filler contents (0–60 wt.%). The results were in good agreement (less than 2% differences) with other available programs (Phy-X/PSD) and Monte Carlo particle transport simulation code, namely PHITS, which showed that the overall high-energy photon shielding abilities of the composites considerably increased with increasing rare-earth oxide contents but reduced with increasing photon energies. In particular, the Gd2O3/HDPE composites had the highest µm values at photon energies of 0.1, 0.5, and 5 MeV, due to having the highest atomic number (Z). Furthermore, the Pbeq determination of the composites within the X-ray energy ranges indicated that the 10 mm thick samples with filler contents of 40 wt.% and 50 wt.% had Pbeq values greater than the minimum requirements for shielding materials used in general diagnostic X-ray rooms and computerized tomography rooms, which required Pbeq values of at least 1.0 and 1.5 mmPb, respectively. In addition, the comparisons of µm, µ, and HVL among the rare-earth oxide/HDPE composites investigated in this work and other lead-free X-ray shielding composites revealed that the materials developed in this work exhibited comparable X-ray shielding properties in comparison with that of the latter, implying great potential to be used as effective X-ray shielding materials in actual applications.
The potential utilization of wood/polyvinyl chloride (WPVC) composites containing an X-ray protective filler, namely bismuth oxide (Bi2O3) particles, was investigated as novel, safe, and environmentally friendly X-ray shielding materials. The wood and Bi2O3 contents used in this work varied from 20 to 40 parts per hundred parts of PVC by weight (pph) and from 0 to 25, 50, 75, and 100 pph, respectively. The study considered X-ray shielding, mechanical, density, water absorption, and morphological properties. The results showed that the overall X-ray shielding parameters, namely the linear attenuation coefficient (µ), mass attenuation coefficient (µm), and lead equivalent thickness (Pbeq), of the WPVC composites increased with increasing Bi2O3 contents but slightly decreased at higher wood contents (40 pph). Furthermore, comparative Pbeq values between the wood/PVC composites and similar commercial X-ray shielding boards indicated that the recommended Bi2O3 contents for the 20 pph (40 ph) wood/PVC composites were 35, 85, and 40 pph (40, 100, and 45 pph) for the attenuation of 60, 100, and 150-kV X-rays, respectively. In addition, the increased Bi2O3 contents in the WPVC composites enhanced the Izod impact strength, hardness (Shore D), and density, but reduced water absorption. On the other hand, the increased wood contents increased the impact strength, hardness (Shore D), and water absorption but lowered the density of the composites. The overall results suggested that the developed WPVC composites had great potential to be used as effective X-ray shielding materials with Bi2O3 acting as a suitable X-ray protective filler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.