BackgroundThis cross-sectional study determined the prevalence of Salmonella spp. and their serotypes on dressed chicken sold at retail outlets in Trinidad. The study also investigated the risk factors for contamination of dressed carcasses by Salmonella spp. at cottage poultry processor outlets where chickens are slaughtered and processed for sale.MethodsA total of 133 dressed, whole chickens and 87 chicken parts from 44 cottage poultry processors and 36 dressed, whole chickens and 194 chicken parts from 46 supermarket outlets were randomly collected throughout the country. Isolation and identification of Salmonella spp. were performed using standard bacteriological techniques. Serotyping was performed by a regional reference laboratory.ResultsThe prevalence of Salmonella spp. in chicken carcasses sampled from cottage poultry processors and supermarkets was 20.5% and 8.3% respectively (p <0.001). The frequency of isolation of Salmonella spp. at cottage poultry processors was 22.4%, 23.0%, 7.1%, and 10.0% for non-chilled whole chicken, non-chilled chicken parts, chilled whole chicken and chilled chicken parts respectively. Fresh, non-chilled chicken (22.6%) yielded a higher frequency of isolation of Salmonella spp. than chilled chickens (8.3%). For supermarket samples, the frequency of isolation of Salmonella spp. was 19.0%, 8.1%, 0.0% and 7.6% for chilled whole chickens, chill chicken parts, frozen whole chicken and frozen chicken parts respectively. The swab method of sampling yielded a statistically significantly (p = 0.029) higher frequency (3.2%) of Salmonella spp. than the rinse method (1.6%). The predominant serotypes isolated were Kentucky (30.9%) and Javiana (22.7%). Use of chilled water-bath to cool carcasses was the only risk factor significantly (p = 0.044) associated with isolation of Salmonella spp.ConclusionRaw chicken carcasses purchased from cottage poultry processors pose a significantly higher risk of contamination with Salmonella spp. than those sold at supermarkets.
In this study, the reinforcement effect of different proportions of eggshell/silver (ES-Ag) nanomaterial on the structural and antimicrobial properties of 70/30 poly(butylene-co-adipate terephthalate)/polylactic acid (PBAT/PLA) immiscible blends was investigated. The ES-Ag was synthesized using a single step ball milling process and characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). These results confirmed the existence of silver nanoparticles (Ag NPs) in the interstitial spaces of the eggshell particles. The thin films in this study were prepared using hot melt extrusion and 3D printing for mechanical and antimicrobial testing, respectively. These films were also characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), XRD, tensile testing, and antimicrobial analysis. It was found that the incorporation of ES-Ag (0.5-2.0% content) compromised the tensile properties of the blend, due to poor interaction between the matrix and the ES-Ag in the ternary systems, but thermal analysis revealed improvement in the onset of degradation temperature and char yield at 500 °C. Though film toughness was better than that of PLA, the strength was lower, yet synergistic to those of PBAT and PLA. In general, the PBAT/PLA/ES-Ag ternary system had properties intermediate to those of the pure polymers. In vitro assessment of the antimicrobial activity of these films conducted on Listeria monocytogenes and Salmonella Enteritidis bacteria revealed that the blend composite films possessed bacteriostatic effects, due to the immobilized ES-Ag nanomaterials in the blend matrix. Atomic absorption spectroscopy (AAS) analysis of water and food samples exposed to the films showed that Ag NPs were not released in distilled water and chicken breast after 72 and 168 h, respectively.
A field-effect transistor (FET) is one of the most commonly used semiconductor devices.Recently, increasing interest has been given to FET-based biosensors owing totheir outstanding benefits, which are likely to include a greater signal-to-noise ratio (SNR), fast measurement capabilities, and compact or portable instrumentation. Thus far, a number of FET-based biosensors have been developed to study biomolecular interactions, which are the key drivers of biological responses in in vitro or in vivo systems. In this review, the detection principles and characteristics of FET devices are described. In addition, biological applications of FET-type biosensors and the Debye length limitation are discussed.
Here, the rapid detection of Salmonella typhimurium by a portable surface plasmon resonance (SPR) biosensor in which the beam from a diode laser is modulated by a rotating mirror is reported. Using this system, immunoassay based on lipopolysaccharides (LPS)-specific monoclonal anti-Salmonella antibody was performed. For the purpose of orientation-controlled immobilization of antibodies on the SPR chip surface, the cysteine-mediated immobilization method, which is based on interaction between a gold surface and a thiol group (-SH) of cysteine, was adopted. As a result, using the portable SPR-based immunoassay, we detected S. typhimurium in the range from 10^7 CFU/mL to 10^9 CFU/mL within 1 hour. The results indicate that the portable SPR system could be potentially applied for general laboratory detection as well as on-site monitoring of foodborne, clinical, and environmental agents of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.