In this article, the parameters of a hybrid log-linear model (log-Poisson) are estimated using the fuzzy least-squares (FLS) procedures (Celmiš, 987a,b;D'Urso and Gastaldi, 2000;DUrso and Gastaldi, 2001). A goodness of fit have been derived in order to assess and compare this new model and the classical log-Poisson regression in loss reserving framework (Mack, 1991). Both the hybrid model and its goodness of fit are performed on a loss reserving data.
In this article, we are interested in developing an alternative estimation method of the parameters of the hybrid log-Poisson regression model. In our previous paper, we have proposed a hybrid log-Poisson regression model where we have derived the analytical expression of the fuzzy parameters. We found that the hybrid model provide better results than the classical log-Poisson regression model according to the mean square error prediction and the goodness of fit index. However, nowhere we have taken into account the optimal value of h(α-cut) which is of greatest importance in fuzzy regressions literature. In this paper, we provide an alternative estimation method of our hybrid model using a quadratic optimization program and the optimized h-value (α-cut). The expected value of fuzzy number is used as a defuzzification procedure to move from fuzzy values to crisp values. We perform the hybrid model with the alternative estimation we are suggesting on two different numerical data to predict incremental payments in loss reserving. From the mean square error prediction, we prove that the alternative estimation of the new hybrid model with an optimized h-value predicts incremental payments better than the classical log-Poisson regression model as well as the same hybrid model with analytical estimation of parameters. Hence we have optimized the outstanding loss reserves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.