Luminescent solar concentrators (LSCs) are presented that use a rear scattering layer made of a phosphorescent material for improving the use of the incident solar light spectrum. Besides simply scattering incident light that passes through the waveguide proper, the phosphor can absorb blue light and emit this light at a wavelength more amenable to absorption by the fluorescent dye. Integrated emission energies from the LSCs may be increased using the phosphor scatterer 4%–40% depending on the concentration of dye in the waveguide when compared to standard white scatterers.
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publicationCitation for published version (APA): Roozeboom, F., Klootwijk, J. H., Verhoeven, J. F. C., Heuvel, van den, F. C., Dekkers, W., Heil, S. B. S., ... Blin, D. (2007). ALD options for Si-integrated ultrahigh-density decoupling capacitors in pore and trench designs. ECS Transactions, 3(15), 173-181. DOI: 10.1149/1.2721486 General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. This paper reviews the options of using Atomic Layer Deposition (ALD) in passive and heterogeneous integration. The miniaturization intended by both integration schemes aim at Si-based integration for the former and at die stacking in a compact System-in-Package for the latter.In future Si-based integrated passives a next miniaturization step in trench capacitors requires the use of multiple 'classical' MOS layer stacks and the use of so-called high-k dielectrics (based on HfO 2 , etc.) and novel conductive layers like TiN, etc. to compose MIS and MIM stacks in 'trench' and 'pore' capacitors with capacitance densities exceeding 200 nF/mm 2 . One of the major challenges in realizing ultrahigh-density trench capacitors is to find an attractive pore lining and filling fabrication technology at reasonable cost and reaction rate as well as low temperature (for back-end processing freedom). As the deposition for the dielectric and conductive layers should be highly uniform, step-conformal and lowtemperature (≤ 400 °C), ALD is an enabling technology here, by virtue of the self-limiting mechanism of this layer-by-layer deposition technique.This article discusses first a f...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.