Extraction of copper from sufidic ores, either by pyrometallurgy or hydrometallurgy, has various limitations. In this study, a solvometallurgical process for the extraction of copper from sulfidic ore minerals (chalcopyrite, bornite, chalcocite and digenite) was developed by using an organic lixiviant (FeCl 3 as oxidizing agent and ethylene glycol (EG) as organic solvent). All the studied copper sulfide minerals could be leached efficiently with a FeCl 3 -EG solution. Other lixiviant systems, namely CuCl 2 -EG, FeCl 3 -ethanol and FeCl 3 -propylene glycol could also extract copper, but they did not perform as well as the FeCl 3 -EG solutions. The mechanistic study of chalcopyrite leaching in FeCl 3 -EG solutions confirmed that the leaching products of chalcopyrite were FeCl 2 , CuCl and solid elemental sulfur, where the Fe(II) and Cu(I) were quantified by UV-Vis absorption spectroscopy and solid sulfur was identified by powder XRD. A kinetic study showed that the leaching process was a surface chemical controlled process and the apparent activation energy was calculated to be 60.1 kJ mol −1 . Subsequently, electrodeposition of copper from the pregnant leachate was investigated, and SEM-EDX analysis showed that uniform cubic crystalline deposits of pure copper were produced. Meanwhile, the Fe(III) was regenerated by oxidizing Fe(II) at the anode, with a Morgane membrane in between two electrode compartments to prevent the transfer of Fe(III) to the cathode. Finally, a closed-loop solvometallurgical process was designed with three operational steps: leaching, electrodeposition and removal of Fe(II). The regeneration of the FeCl 3 -EG solution and the use of EG contribute to the sustainability and the greenness of the process.
Metal-organic framework (MOF) films can be made by cathodic electrodeposition, where a Brønsted base is formed electrochemically which deprotonates the MOF linkers that are present in solution as undissociated/partially dissociated weak acids. However, the co-deposition of metal and the narrow range of possible metal nodes limit the scope of this method. In this work, we propose the use of hydrogen peroxide (hydrogen peroxide assisted cathodic deposition or HPACD), to overcome these limitations. Electrochemical measurements indicate that in DMF, hydrogen peroxide is reduced to superoxide anions that deprotonate the carboxylic ligands. This single-electron reduction happens at much higher potentials than all previous reported methods. This prevents the codeposition of metal and extends the range of possible metal nodes. Various pure MOF films (HKUST-1, MIL-53(Fe) and MOF-5) were prepared via this approach. HPACD was also used for the preparation of patterned MOF films and of flexible Cu-BTC coated paper membranes which reject 99.1 % of Rose Bengal from water with a permeance of 8.4 L m À2 h À1 bar À1 .
Indium(iii) is electrodeposited from organic electrolytes, in which indium(i) occurs as an intermediate species, and disproportionates to indium(iii) and indium(0) in the form of nanoparticles.
The electrodeposition of gallium from GaCl3 in 1,2-dimethoxyethane (DME) is a two-step reduction process, leading to a deposit composed of spherical gallium droplets covered by thin gallium oxide shells.
Metal-organic framework (MOF) films can be made by cathodic electrodeposition, where a Brønsted base is formed electrochemically which deprotonates the MOF linkers that are present in solution as undissociated/partially dissociated weak acids. However, the co-deposition of metal and the narrow range of possible metal nodes limit the scope of this method. In this work, we propose the use of hydrogen peroxide (hydrogen peroxide assisted cathodic deposition or HPACD), to overcome these limitations. Electrochemical measurements indicate that in DMF, hydrogen peroxide is reduced to superoxide anions that deprotonate the carboxylic ligands. This single-electron reduction happens at much higher potentials than all previous reported methods. This prevents the codeposition of metal and extends the range of possible metal nodes. Various pure MOF films (HKUST-1, MIL-53(Fe) and MOF-5) were prepared via this approach. HPACD was also used for the preparation of patterned MOF films and of flexible Cu-BTC coated paper membranes which reject 99.1 % of Rose Bengal from water with a permeance of 8.4 L m À2 h À1 bar À1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.