The global citrus industry is continually confronted by new technological challenges to meet the everincreasing consumer awareness and demand for qualityassured fruit. To face these challenges, recent trend in agribusiness is declining reliance on subjective assessment of quality and increasing adoption of objective, quantitative and non-destructive techniques of quality assessment. Nondestructive instrument-based methods are preferred to destructive techniques because they allow the measurement and analysis of individual fruit, reduce waste and permit repeated measures on the same item over time. A wide range of objective instruments for sensing and measuring the quality attributes of fresh produce have been reported. Among non-destructive quality assessment techniques, near-infrared (NIR) spectroscopy (NIRS) is arguably the most advanced with regard to instrumentation, applications, accessories and chemometric software packages. This paper reviews research progress on NIRS applications in internal and external quality measurement of citrus fruit, including the selection of NIR characteristics for spectra capture, analysis and interpretation. A brief overview on the fundamental theory, history, chemometrics of NIRS including spectral pre-processing methods, model calibration, validation and robustness is included. Finally, future prospects for NIRS-based imaging systems such as multispectral and hyperspectral imaging as well as optical coherence tomography as potential non-destructive techniques for citrus quality assessment are explored.
Optical measurement of fruit quality is challenging due to the presence of a skin around the fruit flesh and the multiple scattering by the structured tissues. To gain insight in the light-tissue interaction, the optical properties of apple skin and flesh tissue are estimated in the 350-2200 nm range for three cultivars. For this purpose, single integrating sphere measurements are combined with inverse adding-doubling. The observed absorption coefficient spectra are dominated by water in the near infrared and by pigments and chlorophyll in the visible region, whose concentrations are much higher in skin tissue. The scattering coefficient spectra show the monotonic decrease with increasing wavelength typical for biological tissues with skin tissue being approximately three times more scattering than flesh tissue. Comparison to the values from time-resolved spectroscopy reported in literature showed comparable profiles for the optical properties, but overestimation of the absorption coefficient values, due to light losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.