Following the increased popularity of dynamic languages and their increased use in critical software, there have been many proposals to retrofit static type system to these languages to improve possibilities to catch bugs and improve performance. A key question for any type system is whether the types should be structural, for more expressiveness, or nominal, to carry more meaning for the programmer. For retrofitted type systems, it seems the current trend is using structural types. This paper attempts to answer the question to what extent this extra expressiveness is needed, and how the possible polymorphism in dynamic code is used in practise. We study polymorphism in 36 real-world open source Python programs and approximate to what extent nominal and structural types could be used to type these programs. The study is based on collecting traces from multiple runs of the programs and analysing the polymorphic degrees of targets at more than 7 million call-sites. Our results show that while polymorphism is used in all programs, the programs are to a great extent monomorphic. The polymorphism found is evenly distributed across libraries and program-specific code and occur both during program start-up and normal execution. Most programs contain a few ``megamorphic'' call-sites where receiver types vary widely. The non-monomorphic parts of the programs can to some extent be typed with nominal or structural types, but none of the approaches can type entire programs.
Aliasing is crucial for supporting useful implementation patterns, but it makes reasoning about programs difficult. To deal with this problem, numerous type-based aliasing control mechanisms have been proposed, expressing properties such as uniqueness. Uniqueness, however, is black-and-white: either a reference is unique or it can be arbitrarily aliased; and global: excluding aliases throughout the entire system, making code brittle to changing requirements. Disjointness domains, a new approach to alias control, address this problem by enabling more graduations between uniqueness and arbitrary reference sharing. They allow expressing aliasing constraints local to a certain set of variables (either stack variables or fields) for instance that no aliasing occurs between variables within some set of variables but between such sets or the opposite, that aliasing occurs within that set but not between different sets. A hierarchy of disjointness domains controls the flow of references through a program, helping the programmer reason about disjointness and enforce local alias invariants. The resulting system supports fine-grained control of aliasing between both variables and objects, making aliasing explicit to programmers, compilers, and tooling. This paper presents a formal account of disjointness domains along with examples. Disjointness domains provide novel means of expressing may-alias kinds of constraints, which may prove useful in compiler optimisation and verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.