Between July 18th and 24th 2010, 26 leading microbial ecology, computation, bioinformatics and statistics researchers came together in Snowbird, Utah (USA) to discuss the challenge of how to best characterize the microbial world using next-generation sequencing technologies. The meeting was entitled “Terabase Metagenomics” and was sponsored by the Institute for Computing in Science (ICiS) summer 2010 workshop program. The aim of the workshop was to explore the fundamental questions relating to microbial ecology that could be addressed using advances in sequencing potential. Technological advances in next-generation sequencing platforms such as the Illumina HiSeq 2000 can generate in excess of 250 billion base pairs of genetic information in 8 days. Thus, the generation of a trillion base pairs of genetic information is becoming a routine matter. The main outcome from this meeting was the birth of a concept and practical approach to exploring microbial life on earth, the Earth Microbiome Project (EMP). Here we briefly describe the highlights of this meeting and provide an overview of the EMP concept and how it can be applied to exploration of the microbiome of each ecosystem on this planet.
Video-based sensor networks can provide important visual information in a number of applications including: environmental monitoring, health care, emergency response, and video security. This article describes the Panoptes video-based sensor networking architecture, including its design, implementation, and performance. We describe two video sensor platforms that can deliver high-quality video over 802.11 networks with a power requirement less than 5 watts. In addition, we describe the streaming and prioritization mechanisms that we have designed to allow it to survive long-periods of disconnected operation. Finally, we describe a sample application and bitmapping algorithm that we have implemented to show the usefulness of our platform. Our experiments include an in-depth analysis of the bottlenecks within the system as well as power measurements for the various components of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.